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Abstract—In more detail as in [1], we study tensor modules of even orders and the eigenvalue and
eigentensor problem for tensors of any even rank. The canonical representation of a tensor in the
module C2p(Ω) is given. We present several statements and theorems about the eigentensors for
tensors of even rank, and for adjoint, normal, Hermitian, and unitary tensors in a module of even
order. We note that the eigenvalue and eigentensor problem for the tensor of elastic moduli was
studied by Ya. Rykhlevskii in 1983–1984. Earlier, it was studied for tensors of any even rank by
I. N. Vekua.
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1. LOCALLY HILBERT COMPLEX TENSOR MODULES
Consider some general issues of tensor algebra using elementary notions of algebra and functional

analysis [1–9]. Let Cp(Ω) be the set of complex tensors1) of rank p ≥ 0 over C(Ω), where Ω is a domain
in the n-dimensional Riemannian space R

n, C is the set of complex numbers, and C(Ω) is the set of
mappings f : Ω → C. We assume that complex tensors can be represented in the form W = U + iV,
where U and V are real tensors. Hence C0(Ω) is the ring of scalars (tensors of rank zero). One can readily
see that the set Cp(Ω) is a module over the ring C0(Ω), i.e., a C0(Ω)-module [1]. The number p is called
the order of the module Cp(Ω).

If W = U + iV ∈ Cp(Ω), then the complex conjugate tensor has the form W = U − iV ∈ Cp(Ω).
In what follows, we assume that the elements of the module Cp(Ω) are continuous tensors in the
domain Ω and the passage from one coordinate system to another is performed by a homeomorphism
of the class Ck, k ≥ 1. Therefore, if a tensor belong to the class Cm (0 ≤ m < k) with respect to
some arbitrarily chosen coordinate system, then it belongs to the same class with respect to any other
coordinate system. Obviously, the fact that a tensor belongs to the class Cm (m < k) is an invariant
property of this tensor. For k = ∞, one can consider tensors of class C∞.

1.1. Inner r-Product (r-Convolution) of Tensors
Let us present the definition of the inner r-product of tensors.

Definition 1.1. The inner r-product of tensors A∈Cp+r(Ω) and B∈Cq+r(Ω) is the tensor D=A
r
⊗B

whose components are determined by the formulas2)

D
j1j2...jq

i1i2...ip
= (A

r
⊗B)j1j2...jq

i1i2...ip
= Ak1k2...kr

i1i2...ip
B

j1j2...jq

k1k2...kr
. (1.1)

Thus, 2r indices are cancelled in the inner r-product of tensors. Therefore, only tensors whose rank
is not less than r may participate in the inner r-product. If there is no cancellation of indices (r = 0),
then such a product is called the direct product of tensors.

*E-mail: munikabadze@mail.ru
1)For the definition of a tensor, e.g., see [1, 3, 10–12].
2)For the definition of the convolution operation and the trace of an endomorphism, e.g., see [3].
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If p=q =0, then we omit the symbol
r
⊗ and simply write AB. In this case, the inner r-product is simply

called the inner product. Of course, it can be expressed by the formula AB = Ak1k2...krB
k1k2...kr . We note

that if A and B are tensors over C(Ω) and the inner product AB is zero for any tensor B, then A = 0.

1.2. Local Scalar Product of Tensors. The Local Norm of a Tensor. The Angle between Two Tensors

In Cp(Ω), we introduce the notion of a local scalar product of tensors. If W = U + iV and
W

′ = U
′ + iV′ ∈ Cp(Ω), then the expression

(W, W′)x ≡ WW
′ = UU

′ + VV
′ + i(VU

′ − UV
′)

is called the local scalar product of the tensors W and W
′ at a point x of the domain Ω. Here

UU
′, VV

′, VU
′, and UV

′ stand for the inner products of the corresponding real tensors. For example,
UU

′ = Ui1i2...ipU
′i1i2...ip where the indices run over the values 1, 2, . . . , n. In a similar way, by (1.1),

one can introduce the notion of r-local scalar product. Let W ∈ Cp+r(Ω), and let W
′ ∈ Cq+r(Ω). Then

the r-local scalar product of W and W
′ is the tensor D = (W, W′)(r)x = W

r
⊗W

′
with components

D
j1j2...jq

i1i2...ip
= Wi1i2...ipk1k2...krW

′k1k2...krj1j2...jq
. Obviously, D = (W, W′)x = WW

′ = Wk1k2...krW
′k1k2...kr

for p = q = 0.
One can readily show that the scalar product has the following properties at each point x of the

domain Ω:

(W, W′)x = (W′, W)x, ∀W, W
′ ∈ Cp(Ω),

λ(W, W′)x = (λW, W′)x = (W, λ̄W
′)x, ∀W, W

′ ∈ Cp(Ω), ∀λ ∈ C,

(W + W
′, W′′)x = (W, W′′)x + (W′, W′′)x, ∀W, W

′, W
′′ ∈ Cp(Ω),

(W, W′ + W
′′)x = (W, W′)x + (W, W′′)x, ∀W, W

′, W
′′ ∈ Cp(Ω).

It follows from these properties that (W, W′) is a bilinear form. In addition, if W ∈ Cp(Ω), then
(W, W)x = UU + VV ≥ 0, and the equality is attained only if W(x) = 0, x ∈ Ω.

Definition 1.2. An nonnegative function ‖W‖x =
√

(W, W)x = (UU + VV)1/2 ≥ 0 ∀W ∈ Cp(Ω) is
called the local norm of the tensor W.

One can readily prove the following inequalities [1]:

|(W, W′)x| ≤ ‖W‖x‖W′‖x, ‖W + W
′‖x ≤ ‖W‖x + ‖W′‖x, ∀W, W

′ ∈ Cp(Ω), (1.2)

where the second inequality is called the triangle inequality.
It follows from the above that the module Cp(Ω) has the property of a Hilbert space at each point of

the domain Ω. In this connection, it is called a local Hilbert space (module). Obviously, C2p(Ω) is also a
local Hilbert module of even order, which simultaneously is a unital ring and an algebra [1]. We note that
general issues concerning modules and rings are considered in [4].

Definition 1.3. Tensors W, W′∈Cp(Ω) are said to be orthogonal at a point x if (W, W′)x =WW
′=0.

Obviously, orthogonal tensors satisfy the Pythagorean theorem

‖W + W
′‖2

x = ‖W‖2
x + ‖W′‖2

x, ∀W, W
′ ∈ C(Ω), x ∈ Ω.

The cosine of the angle between real tensors W and W
′ is determined by the formula

cos ψ =
(W, W′)x

‖W‖x‖W′‖x
, ∀W, W

′ ∈ C(Ω), x ∈ Ω,

whence, taking the first inequality in (1.2) into account, we obtain | cos ψ| ≤ 1.
Note that, for a set of tensors of given rank, all theorems about linear dependence and independence

of a set of vectors (tensors of rank 1) remain valid. For brevity, we do not consider these facts.
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588 NIKABADZE

2. EIGENVALUE AND EIGENTENSOR PROBLEM FOR TENSORS OF RANK 2p

We pose the following problem [1].
Let A be a tensor in the algebra C2p(Ω). The problem is to find all tensors W in the module Cp(Ω)

that satisfy the equation

A
p
⊗W = λW, where λ is a scalar. (2.1)

Equation (2.1) always has a trivial solution W = 0. In what follows, speaking about a solution of
Eq. (2.1), we mean only nontrivial solutions W �= 0. Thus, our goal is to study the existence conditions
for nontrivial solutions of Eq. (2.1) and to find methods for their construction.

If Eq. (2.1) has a solution W ∈ Cp(Ω) for some scalar λ, then λ is called an eigenvalue of the tensor A

and W is called a right eigentensor3) corresponding to the eigenvalue λ.
The following problem can also be considered: find all tensors W

′ in the module Cp(Ω) that satisfy
the equation

W
′ p
⊗A = μW

′, where μ is a scalar. (2.2)

If Eq. (2.2) with a given scalar μ has a nontrivial solution W
′ ∈ Cp(Ω), then μ is called an eigenvalue

of the tensor A and W
′ is a left eigentensor corresponding to the number μ. In what follows, we mainly

deal with right eigentensors, because all similar issues for left eigentensors can be considered similarly.
Note that if W is a solution of Eq. (2.1) for some scalar λ, then αW, where α is an arbitrary

scalar, is also its solution. Obviously, one can always choose a scalar α so as to satisfy the condition
‖αW‖x = 1 ∀x ∈ Ω. Indeed, for this it suffices to set α = (‖W‖x)−1. Thus, the solution of Eq. (2.1) can
always be normalized by the condition ‖W‖x = 1, x∈Ω. Therefore, in what follows, we mean normalized
solutions of Eq. (2.1).

If, for a given eigenvalue λ, Eq. (2.1) has k linearly independent solutions W1, . . . , Wk, then their
linear combination α1W1 + . . . + αkWk, where α1, . . . , αk are arbitrary scalars, is also a solution. By the
Schmidt theorem [1], these solutions can be orthonormalized, and one can assume that the conditions

(Wi, Wj) = Wi,k1,...,kpW
k1,...,kp

j· = δij are satisfied. Let W be a normalized solution of Eq. (2.1) for some

eigenvalue λ. By multiplying4) both sides of Eq. (2.1) by the complex conjugate tensor W, we obtain

λ = W 
 A 
 W = WAW = W
i1...ip

Ai1...ipj1...jpW
j1...jp. (2.3)

The right-hand side of this relation is invariant under coordinate transformations. Hence we conclude
that each eigenvalue of the tensor A ∈ C2p(Ω), if it exists, is a scalar. Taking W = E 
 W ≡ EW

(where E is the unit tensor [1] in the ring C2p(Ω)) into account, we can represent Eq. (2.1) in the form

(λE − A)W = 0 ((A − λE)W = 0) and rewrite it in components as (λE
j1...jp

i1...ip
− A

j1...jp

i1...ip
)Wj1...jp = 0,

i1, . . . , ip; j1, . . . , jp = 1, n, or briefly as

(λδj
i − A·j

i· )Wj = 0, i, j = 1, np. (2.4)

Hence we conclude that system (2.4) (the tensor equation (2.1)) has a nontrivial solution if and only if
the condition

det(λE − A) = 0 (2.5)

is satisfied.
The obtained equation (2.5) is invariant under coordinate transformations, because the determinant

of a tensor in the module C2p(Ω) is an invariant [1]. Note that det(λE − A) = det(λδj
i − A·j

i· ) is a

3)In [4], the notion of an eigenelement is given and invariants of endomorphism similarity are introduced. The Hamilton–
Cayley theorem etc. are proved. Under the approach considered in [4], many well-known results of matrix algebra [5] can
readily be generalized to the case of spaces of endomorphisms generated by tensors of rank 4. In what follows, we consider
several issues related to this generalization.

4)In what follows, the symbol
p

⊗ of the inner r-product is either omitted or replaced by the symbol �.
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ON THE EIGENVALUE AND EIGENTENSOR PROBLEM FOR A TENSOR OF EVEN RANK 589

determinant of order np. Therefore, representing Eq. (2.5) in extended form, we obtain an algebraic
equation for λ of degree np:

λnp − a1λ
np−1 + a2λ

np−2 + . . . + (−1)n
p−1anp−1λ + (−1)n

p
anp = 0, (2.6)

where a1, . . . , anp are scalars that depend on the invariants of the tensor A. One can see that, starting
from (2.2), we obtain the same relations (2.5) and (2.6) for μ, which implies that λ = μ. The left and right
eigentensors have the same eigenvalues. Let us calculate a1 and anp , where a1 is the coefficient of λnp−1

in the determinant det(λδj
i − A·j

i· ). The parameter λ is contained, raised only to the first power, only in
the diagonal entries of this determinant. Hence each summand of the determinant that contains λnp−1

has as factors at least np − 1 diagonal entries, but then the last factor must also be a diagonal entry.
Thus, the coefficient of λnp−1 is equal to the coefficient of λnp−1 in the polynomial (which is a summand
of the determinant) (λ − A·1

1·)(λ − A·2
2·) . . . (λ − A·np

np·), i.e., is equal to (A·1
1· + A·2

2· + . . . + A·np

np·). Hence

we have a1 = I1(A) = tr A = A·i
i· = A

i1...ip
i1...ip

, where I1(A) denotes the first invariant of the tensor A and
tr A denotes the trace of the tensor A.

To calculate the constant term anp , we set λ = 0 in (2.6). Then we obtain (−1)n
p
anp = det(−A)

= (−1)n
p
det A and hence anp = det A. The other coefficients can also be calculated, but this is a bit

more complicated. We consider them later.

Definition 2.1. The tensor λE − A is called the characteristic tensor of a tensor A. The polynomial
P (λ) = det(λE − A) is called the characteristic polynomial, and P (λ) = det(λE − A) = 0 is called the
characteristic equation of the tensor A.

Note that the characteristic polynomial and the characteristic equation of the tensor A are indepen-
dent of the choice of the coordinate system. If det A �= 0, then Eq. (2.6) has no roots equal to zero.
If det A = 0, then Eq. (2.6) has at least one zero root. Since the tensor A is not identically zero, it follows
that Eq. (2.6) always has nonzero roots, i.e., the tensor A always has nonzero eigenvalues.

We assume that det A �= 0 and λ1, . . . , λnp are roots of Eq. (2.6), which, of course, are nonzero.
Among these roots, some (or all) of them may be multiple roots. Each root of an algebraic equation is
counted as a root as many times as its multiplicity is. In general, the roots of Eq. (2.6) are complex. If
λ is a root of Eq. (2.6) of multiplicity k ≤ np, then the homogeneous system of Eqs. (2.4) has k linearly
independent solutions W1, . . . , Wk, and all of them are tensors in the module Cp(Ω). In addition, as was
already said, this system of solutions can be assumed to be orthonormal.

Proposition 2.1. If λ and λ′ are two distinct eigenvalues of the tensor A, then any two
eigentensors W and W

′ corresponding to them are linearly independent.

This proposition can be proved by assuming the converse. Taking this proposition into account, we
can prove the following theorem by induction.

Theorem 2.1. The eigentensors of a tensor A ∈ C2p(Ω) that correspond to pairwise distinct
characteristic numbers are linearly independent.

One can readily prove the following theorem.

Theorem 2.2. If W1, W2, W3, . . . are eigentensors of the tensor A∈C2p(Ω) that belong to Cp(Ω)
and correspond to the same eigenvalue λ, then their linear combination C1W1+C2W2+C3W3+. . . is
either zero or is also an eigentensor of the tensor A for the same λ.

Proof. Indeed, it follows from AWk = λWk, k = 1, 2, 3, . . ., that

A(C1W1 + C2W2 + C3W3 + . . .) = λ(C1W1 + C2W2 + C3W3 + . . .).

Hence linearly independent eigentensors corresponding to the same eigenvalue λ form a basis of the
proper submodule, each of whose tensors is an eigentensor for the same λ. In particular, each eigentensor
generates a one-dimensional proper submodule. We note that a linear combination of eigentensors of
the tensor A ∈ C2p(Ω) that correspond to distinct characteristic numbers is not an eigentensor of A in
general.

MECHANICS OF SOLIDS Vol. 43 No. 4 2008



590 NIKABADZE

Definition 2.2. Two tensors A and B in the module C2p(Ω) that satisfy the relation

B = T
−1 
 A 
 T, (2.7)

where T ∈ C2p(Ω) is a nondegenerate tensor, are said to be similar.

The similarity relation between tensors in the module C2p(Ω) is an equivalence relation; i.e., the
following three similarity properties of tensors take place: reflexivity (any tensor A is always similar to
itself), symmetry (if A is similar to B, then B is also similar to A), and transitivity (if A is similar to B

and B is similar to D, then A is similar to D).
It follows from (2.7) that similar tensors always have equal determinants. Indeed, we can see

det B = (det T
−1) det A det T = det A. The determinant equation det B = det A is a necessary but

not sufficient condition for the similarity of tensors A and B.
One can readily see that (2.7) implies λE − B = T

−1 
 (λE − A) 
 T, which, in turn, implies
det(λE − B) = det(λE − A). Thus, similar tensors have the same characteristic polynomial (the same
characteristic equation) and the same eigenvalues.

It is not difficult to write out the expressions for the coefficients of the characteristic equation in terms
of the eigenvalues of the tensor A. Indeed, we use the Viète theorem [13] to write

I1(A) ≡ a1 = λ1 + λ2 + λ3 + . . . + λnp ,

I2(A) ≡ a2 = λ1λ2 + λ2λ3 + . . . + λ1λnp + λ2λ3 + λ2λ4 + . . .

+λ2λnp + λ3λ4 + λ3λ5 + . . . + λ3λnp + . . . + λnp−1λnp ,

Inp−1(A) ≡ anp−1 = λ1λ2 . . . λnp−1 + λ1λ2 . . . λnp−2λnp + . . . + λ2λ3 . . . λnp ,

Inp(A) ≡ anp = λ1λ2 . . . λnp−1λnp ,

where Ik(A), k = 1, np, denotes the kth-order invariant of the tensor A. Thus, a tensor A ∈ C2p(Ω)
has np linearly independent algebraic invariants if det A �= 0.

In conclusion, note that the roots λ1, . . . , λnp of Eq. (2.6) and only they are eigenvalues of the
tensor A ∈ C2p(Ω). These roots are associated with np eigentensors W1, . . . , Wnp , which are linearly
independent and normalized. This system of tensors is, in general, not orthonormal, but each of its
subsystems that consists of eigentensors corresponding to some multiple eigenvalue is orthonormal.

2.1. Reduction to Canonical Form (to the Principal Axes) of a Tensor of Rank 2p
.
First, we note that the following statement holds.

Proposition 2.1. If a system of tensors W1, . . . , Wk is linearly independent, then the system
of tensors W1, . . . , Wk is also linearly independent.

This proposition and the argument at the end of the preceding section imply the following statement.

Proposition 2.3. The system of eigentensors W1, . . . , Wnp of a tensor A ∈ C2p(Ω) and the
system of tensors W1, . . . , Wnp (separately) form bases of the module Cp(Ω).

On the basis of this proposition and the theorem about the construction of a basis in a module by
using bases in modules of smaller dimensions [1], one can prove the following statement.

Proposition 2.4. The systems of multi-tensors Wi ⊗ Wj , Wi ⊗ Wj , Wi ⊗ Wj , and Wi ⊗ Wj ,
i, j = 1, np, where W1, . . . , Wnp is a system of eigentensors of the tensor A ∈ C2p(Ω), are bases
(each of them, separately) of the algebra C2p(Ω).

According to this proposition, each tensor A ∈ C2p(Ω) can be represented as

A = Ai·
·jWi ⊗ W

j
, i, j = 1, np. (2.8)

Taking into account (2.8) in the equations A 
 Wk = λkWk, we obtain Ai·
·j(Wi ⊗ W

j) 
 Wk = λkWk.

Therefore, since (Wi ⊗ W
j)
 Wk = Wi(W

j 
 Wk) = Wi(Wk, W
j) = Wiδ

j
k, we obtain Ai·

·kWi = λkWk.
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Because of the linear independence of the tensors Wk (k = 1, np), this relation implies Ai·
·k = λkδ

i
k,

i, k = 1, np. On the basis of the latter relation, we rewrite (2.8) as

A =
np∑

k=1

λkWk ⊗ W
k
. (2.9)

Obviously, (2.9) can be written in the component form

A
j1...jp

i1...ip
=

np∑

k=1

λkWk,i1...ipW
k,j1...jp

. (2.10)

We have obtained an important relation in the form (2.9) or (2.10), which reveals the structure of each of
the tensors A in the algebra C2p(Ω). In particular, each tensor in the algebra C2p(Ω) can be expressed in
terms of invariant characteristics of this tensor, i.e., in terms of the eigenvalues λk and the eigentensors
corresponding to them. The representation of a tensor A∈C2p(Ω) in the form (2.9) is called the reduction
of this tensor to canonical form (to the principal axes). This representation plays an important role in
various fields of mathematics and mechanics.

Now we consider the case in which several eigenvalues of a tensor A ∈ C2p(Ω) are zero. Obviously,
all eigenvalues of a tensor cannot be zero, because then the trivial case A = 0 takes place.

One can readily see that det A is equal to the product of eigenvalues of the tensor A, i.e.,

det A = anp = λ1 . . . λnp . (2.11)

Obviously, (2.11) can also be obtained from the Viète theorem. It follows from (2.11) that some
eigenvalues of the tensor A are zero if and only if det A = 0. Let r be the rank of the determinant det A

(the rank of the matrix of the components of the tensor A), which, of course, is a scalar characteristic of
the tensor A. Then the homogeneous system of equations

A
j1...jp

i1...ip
Wj1...jp = 0 (A·j

i Wj = 0), i, j = 1, np,

i = N(i1, . . . , ip), j = N(j1, . . . , jp), i1, . . . , ip; j1, . . . , jp = 1, n,

where i = N(i1, . . . , ip) is the number of an element of the set of numerical sequences i1, . . . , ip,
whose number of elements is equal to np, has r linearly independent solutions W1, . . . , Wr. In this
case, it follows from the argument at the end of the preceding section that this system of tensors,
which are tensors in the module Cp(Ω), is orthonormal. Obviously, in the case under study, the
multiplicity of the eigenvalue λ = 0 is equal to the rank r of the determinant det A. We assume that
λnp−r+1 = λnp−r+2 = . . . = λnp = 0, and λi �= 0 if i = 1, np − r. In this case, relation (2.9) takes the

form A =
np−r∑
k=1

λkWk ⊗ W
k
. We note that the eigentensors Wk, k = 1, np − r, corresponding to the

nonzero eigenvalues do not form a complete basis of the module Cp(Ω). To obtain a complete basis of the
module Cp(Ω), they must be supplemented with r tensors W

′
1, . . . , W

′
r, which are nontrivial solutions

of the homogeneous equation A 
 W = 0.
Thus, the eigentensors of the tensor A of the algebra C2p(Ω) form a basis of the module Cp(Ω), and

their pairwise direct products form a basis of the algebra C2p(Ω).

Definition 2.3. A tensor A ∈ C2p(Ω) coinciding with its adjoint (A∗ = A) is said to be Hermitian
(self-adjoint).

Let A ∈ C2p(Ω) be a self-adjoint tensor (the definition of a self-adjoint tensor is given below), i.e., let

Ai1...ipj1...jp = Āj1...jpi1...ip , i1, . . . , ip; j1, . . . , jp = 1, n. (2.12)

Then, for any two tensors W and W
′ ∈ Cp(Ω), we obtain the relation invariant under the coordinate

transformations

W
′
AW = WĀW

′
. (2.13)

This implies that condition (2.12) expresses an invariant property of the tensor of the algebra C2p(Ω). In
the case of a real tensor, the Hermitian property means the symmetry of the form Ai1...ipj1...jp=Aj1...jpi1...ip .
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592 NIKABADZE

We assume that A is a Hermitian tensor of the algebra C2p(Ω), λ is its eigenvalue, and W is the
corresponding normalized eigentensor. Then, of course, we have

AW = λW, ĀW = λ̄W. (2.14)

Multiplying the first relation in (2.14) by W and the second by W and then subtracting one from the
other, because of (2.13), we obtain (λ − λ̄)(W, W) = λ − λ̄ = WAW − WĀW = 0, i.e., λ = λ̄. Thus,
the eigenvalues of a Hermitian tensor are real.

Let λ and λ′ be two distinct eigenvalues of the Hermitian tensor A of the algebra C2p(Ω), and let W

and W
′ be the eigentensors corresponding to them. Then the relation AW = λW and ĀW

′ = λ′
W

′
hold.

If we multiply the first of them by W
′

and the second of them by W and then subtract one from the other,
then, according to (2.13), we obtain (λ − λ′)WW

′ = W
′
AW − WĀW

′ = 0, because we have λ �= λ′ by
assumption, and hence WW

′ = (W, W′) = 0; i.e., W and W
′ are orthogonal.

Thus, if A is a Hermitian tensor in the algebra C2p(Ω), then its eigenvalues λ1, . . . , λnp are real and
the corresponding eigentensors form an orthonormal system. In this case, Wi = W

i and relation (2.9)
becomes

A =
np∑

k=1

λkWk ⊗ Wk. (2.15)

For the components of the tensor A, we have the expression

Ai1...ipj1...jp =
np∑

k=1

λkWk,i1...ipWk,j1...jp .

If A is a real Hermitian tensor, then its eigentensors are also real. Obviously, for a real Hermitian

tensor, relation (2.15) becomes A =
np∑

k=1

λkWk ⊗ Wk, and for the components, we have

Ai1...ipj1...jp =
np∑

k=1

λkWk,i1...ipWk,j1...jp .

One can readily see that any positive integer power of a tensor A ∈ C2p(Ω) can be represented

by the formula A
n =

n︷ ︸︸ ︷
A 
 . . . 
 A. If a tensor is represented in the principal axes (2.9), then we have

A
n =

np∑
k=1

λn
kWk ⊗ W

k
. Using (2.9), we can define any power of a tensor with any numerical exponent

in the form A
α =

np∑
k=1

λα
k Wk ⊗ W

k
. Here we assume that A

α is defined for the values of α for which the

power λα
k is defined. Hence if det A �= 0, then A

0 = E. Moreover, in this case, we have

A
−1 =

np∑

k=1

λ−1
k Wk ⊗ W

k
. (2.16)

The invariants of the inverse tensor A
−1 can be expressed in terms of the invariants of the tensor A.

Indeed, by simple transformations, using (2.16), we obtain

Ik(A−1) = I−1
np (A)Inp−k(A), k = 1, np − 1, Inp(A−1) = I−1

np (A).

One can readily find the invariants of any other power of the tensor A ∈ C2p(Ω), i.e., Ik(Am),
where k = 1, np and m is an arbitrary positive integer.

Note that for the algebraic invariants of the tensor A∈C2p(Ω) we can take Ik(A), k=1, np, or I1(Am),
m = 1, np. One can readily find the relation between these invariants, i.e., to express one of them in terms
of the others. For example, we have the formula I2(A) = 1

2 [I2
1 (A)− I1(A2)], which can readily be verified
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by expressing the invariants in terms of the eigenvalues of the tensor A. To obtain the other relations
expressing one of the invariants in terms of the others, it is necessary to know the Hamilton–Cayley
theorem for the tensor A ∈ C2p(Ω), which, for brevity, we do not consider here.

Any tensor A ∈ C2p(Ω) can be represented as the sum of a symmetric and skew-symmetric
(antisymmetric) tensor as follows:

A = A
S + A

A, A
S = 1

2 (A + A
T ), A

A = 1
2 (A − A

T ).

In a similar way, the tensor A∈C2p(Ω) can be represented as the sum of a spherical tensor and a deviator:
A = (1/np)I1(A)E + devA. Hence I1(devA) = 0.

3. SOME THEOREMS ABOUT ADJOINT, NORMAL, HERMITIAN, AND UNITARY
TENSORS OF THE MODULE C2p(Ω)

We present the definition of the adjoint tensor.

Definition 3.1. A tensor A
∗ is said to be the adjoint of a tensor A ∈ C2p(Ω) at a point x ∈ Ω if the

following relation holds for any tensors W and W
′ in Cp(Ω):

(A 
 W, W′)x = (W, A∗ 
 W
′)x. (3.1)

One can readily see that for any tensors W ∈ Cp(Ω) and A ∈ C2p(Ω) we have

A 
 W = W 
 A
T , W 
 A = A

T 
 W. (3.2)

Then, using the first relation in (3.2), we obtain

(A 
 W, W′)x = (W, ĀT 
 W
′)x. (3.3)

Subtracting (3.3) termwise from (3.1), we obtain (W, (A∗ − Ā
T ) 
 W

′) = 0. Since W and W
′ are

arbitrary, this implies A
∗ = Ā

T . Taking the relation A
∗ = Ā

T to be the definition, we can readily
prove (3.1). Indeed, replacing Ā

T by A
∗ on the right-hand side in (3.3), we obtain (3.1).

Hence for each tensor A ∈ C2p(Ω), there exists an adjoint tensor A
∗, and this tensor is unique.

Using the second formula in (3.2) and formula (3.1), we can readily prove the following relation
(W 
 A, W′)x = (W, W′ 
 A

∗)x.

Definition 3.2. A tensor A ∈ C2p(Ω) is said to be normal if it commutes with its adjoint
(A 
 A

∗ = A
∗ 
 A).

Theorem 3.1. Any tensor A ∈ C2p(Ω) can be represented as

A = A1 + iA2, (3.4)

where A1 and A2 are Hermitian tensors (Hermitian components of the tensor A). The Hermitian
components are uniquely determined by the tensor A. The tensor A is normal if and only if its
Hermitian components A1 and A2 commute with each other.

Proof. We assume that representation (3.4) holds. Then, passing to the adjoint tensors on both sides
in (3.4), we obtain

A
∗ = A1 − iA2. (3.5)

Treating (3.4) and (3.5) as a system of equations for A1 and A2 and solving this system, we find the
tensors

A1 = 1
2 (A + A

∗), A2 = 1
2i (A − A

∗), (3.6)

which are obviously Hermitian. Conversely, determining the Hermitian tensors by using (3.6), one can
readily see that they are related to A by (3.4).

Let A be a normal tensor. Then it follows from (3.6) that A1A2 = A2A1. From A1A2 = A2A1,
using (3.4) and (3.5), one can obtain AA

∗ = A
∗
A. The proof of the theorem is complete.

Definition 3.3. We say that a tensor W ∈ Cp(Ω) is orthogonal to a subset C
′
p(Ω) ⊂ Cp(Ω) and

write W ⊥ C
′
p(Ω) if it is orthogonal to any tensor in C

′
p(Ω).

MECHANICS OF SOLIDS Vol. 43 No. 4 2008



594 NIKABADZE

Definition 3.4. We say that two subsets C
′
p(Ω) and C

′′
p(Ω) of the module Cp(Ω) are mutually

orthogonal and write C′
p(Ω) ⊥ C′′

p(Ω) if any tensor in one of the subsets is orthogonal to any tensor
in the other subset.

Note that the orthogonality of tensors and sets of tensors can be considered both at an arbitrary
point x∈Ω and in the domain Ω. The mutually orthogonal subsets C

′
p(Ω) and C

′′
p(Ω) of the module Cp(Ω)

are submodules, and each tensor W ∈ Cp(Ω) can be uniquely represented as the sum W = W
′ + W

′′,
where W

′ ∈ C
′
p(Ω) and W

′′ ∈ C
′′
p(Ω); i.e., the splitting Cp(Ω) = C

′
p(Ω) + C

′′
p(Ω), where C

′
p(Ω) ⊥ C

′′
p(Ω),

holds. Hence the sum of dimensions of the submodules C
′
p(Ω) and C

′′
p(Ω) is equal to the dimension of

the module Cp(Ω). We note that, in the case under study, C
′
p(Ω) is said to be the orthogonal complement

of C
′′
p(Ω). Obviously, C

′′
p(Ω) is the orthogonal complement of C

′
p(Ω)

Definition 3.5. A submodule C
′
p(Ω) ⊂ Cp(Ω) is said to be invariant with respect to a given

tensor A ∈ C2p(Ω) if it follows from W ∈ C
′
p(Ω) that A 
 W ∈ C

′
p(Ω) (AC

′
p(Ω) ⊂ C

′
p(Ω)).

Theorem 3.2. If a certain5) submodule C
′
p(Ω) ⊂ Cp(Ω) is invariant under A ∈ C2p(Ω), then its

orthogonal complement C
′′
p(Ω) is invariant under A

∗.

Proof. Let W
′∈C

′
p(Ω), and let W

′′∈C
′′
p(Ω). Then it follows from AW

′∈C
′
p(Ω) that (AW

′, AW
′′)=0.

From this relation, using (3.1), we obtain (W′, A∗
W

′′) = 0. Since W
′ is an arbitrary tensor in the

module C
′
p(Ω), we have A

∗
W

′′ ∈ C
′′
p(Ω), as was required to prove.

Definition 3.6. A tensor A in the module C2p(Ω) is called a tensor of semisimple structure if it has np

linearly independent eigentensors, where np is the dimension of the module C2p(Ω).

The following statement holds.

Proposition. A tensor A ∈ C2p(Ω) has a simple structure if all roots of the characteristic
equation are distinct.

We note that the converse statement is not true, i.e., there exist tensors of simple structure in the
module C2p(Ω) whose characteristic equations have multiple roots.

Theorem 3.3. If A ∈ C2p(Ω) is a tensor of simple structure, then the conjugate tensor A
∗ also

has a simple structure, and in this case, the complete systems of eigentensors W1, W2, . . . , Wnp

and W
′
1, W

′
2, . . . , W

′
np of the tensors A and A

∗ can be chosen so that they are biorthogonal,
i.e., (Wk, W

′
i) = δki, i, k = 1, np.

Proof. Let W1, W2, . . . , Wnp be a complete system of normalized eigentensors A ∈ C2p(Ω). We

take these tensors to be a basis of the module Cp(Ω). Let C
(k)
p (Ω) (k = 1, np) be the submodule of

the module Cp(Ω) whose generating tensors are the tensors {W1, W2, . . . , Wnp}\{Wk} (k = 1, np).

Hence for each k, C
(k)
p (Ω) is an (np − 1)-dimensional invariant submodule of the module Cp(Ω) with

respect to A. Then, considering the one-dimensional submodule C
(k)′
p (Ω) (k = 1, np) generated by

the normalized tensor W
′
k ⊥ C

(k)
p (Ω) (k = 1, np), we can readily see that it is the one-dimensional

orthogonal complement of the submodule C
(k)
p (Ω) (k = 1, np). Then it follows from Theorem 3.2 that

the submodule C
(k)
p (Ω) is invariant under A

∗; i.e., A
∗
W

′
k = μkW

′
k and W

′ �= 0, k = 1, np. It follows

from W
′
k ⊥ C

(k)
p (Ω) that (Wk, W

′
k) = 1 �= 0, because otherwise the tensor W

′
k should be zero. Thus, we

have (Wi, W
′
j) = δij , i, j = 1, np. The proof of the theorem is complete.

We note that the fact that the tensors W1, . . . , Wnp and W
′
1, . . . , W

′
np are biorthonormal implies the

linear independence of each of these systems of tensors (taken separately).

5)The theorems considered in the present paper are similar to the theorems about linear operators in [5]. In general, if a tensor
of rank 2p (p > 1) is identified with an endomorphism of the tensor space (of the module Cp(Ω)), then many problems of
linear operators are automatically transferred to the case of space of endomorphisms generated by tensors of even rank.
The general problems of spaces of endomorphisms can be found in [3, 4].
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Theorem 3.4. A common eigentensor W ∈ Cp(Ω) of the tensors A ∈ C2p(Ω) and A
∗ ∈ C2p(Ω)

corresponds to the complex conjugate eigenvalues of these tensors.

Proof. Let W ∈ Cp(Ω) be a common eigentensor of the tensors A ∈ C2p(Ω) and A
∗ ∈ C2p(Ω),

i.e., AW=λW and A
∗
W=μW, W �=0. Then, taking these relations into account, from (3.1) with W

′=W

we obtain λ(W, W) = μ̄(W, W). This implies λ = μ̄.

Theorem 3.5. For each tensor A ∈ C2p(Ω), there exists an (np − 1)-dimensional invariant

submodule C
(np−1)
p (Ω).

Proof. Let W
′ ∈ Cp(Ω) be an eigentensor A

∗ ∈ C2p(Ω), and let C
(1)′
p (Ω) be a one-dimensional

submodule of the module Cp(Ω) generated by the tensor W
′. Let C

(np−1)
p (Ω) be the orthonormal com-

plement of the one-dimensional module C
(1)′
p (Ω). Since C

(1)′
p (Ω) is invariant under A

∗ and A = (A∗)∗,

it follows by Theorem 3.2 that the submodule C
(1)′
p (Ω) ⊂ Cp(Ω) is invariant under A ∈ C2p(Ω).

Using this theorem, one can prove the existence of a submodule C
np−2
p (Ω) ⊂ C

np−1
p (Ω) invariant

under A ∈ C2p(Ω). Continuing this argument, we construct a chain of np successively embedded

invariant submodules of the tensor A ∈ C2p(Ω): C
1
p(Ω) ⊂ . . . ⊂ C

(np)
p (Ω) ⊂ Cp(Ω). Here the subscript

in parentheses is the submodule dimension.

Theorem 3.6 (Schur ’stheorem). For any tensor A∈C2p(Ω), one can construct a basis in which
the tensor has a triangular form (the matrix of the tensor components is triangular).

Proof. Let W1 be a normalized tensor in A ∈ C
(1)
p (Ω). In C

(2)
p (Ω), we choose a normalized tensor W2

such that (W1, W2) = 0. In C
(3)
p (Ω) we consider a normalized tensor W3 such that (W1, W3) = 0

and (W2, W3) = 0. Continuing this process, we construct an orthonormal basis W1, W2, . . . , Wnp with

the property that the submodule C
(k)
p (Ω) (k = 1, np) spanned by the first k basis tensors W1, . . . , Wk

is invariant under the tensor A ∈ C2p(Ω). Let ‖Aij‖np

1 be the matrix of the tensor A. We obtain

A 
 Wj =
np∑
i=1

AijWj , where Aij = (A 
 Wj , Wi). Since A 
 Wj belongs to C
(j)
p (Ω), we have

Aij = (A 
 Wj , Wi) = 0 for i > j. Hence the matrix of the tensor components is upper triangular, and

the tensor A has the representation A =
np∑

i,j=1
AijWi ⊗ Wj , where Aij = 0 for i > j.

We note that this theorem can readily be proved by using the general theorem on the reduction of a
tensor to the Jordan form and the subsequent orthogonalization of the Jordan basis. But the above proof
is, in fact, based only on the existence of an eigentensor of the tensor A.

Now let us prove a lemma about a property of commuting tensors.
Lemma. Commuting (permutable) tensors A and B (A 
 B = B 
 A) in the module C2p(Ω)

always have a common eigentensor.

Proof. Let W ∈ Cp(Ω) be an eigenvector of the tensor A ∈ C2p(Ω). Then A 
 W = λW, W �= 0, and
since the tensors A and B in the module C2p(Ω) commute, we have

A 
 B
k 
 W = λB

k 
 W, k = 0, 1, 2, . . . (3.7)

We assume that the first m (0 ≤ m ≤ np) tensors in the system of tensors W, B 
 W, B
2 
 W, . . .

are linearly independent, while the (m + 1)th tensor B
m 
 W is already a linear combination of the

preceding tensors. One can readily see that the submodule C
(m)
p (Ω) ⊂ Cp(Ω) generated by the system

of tensors W, BW, . . . , B
m−1

W is invariant under B. It follows that the submodule C
(m)
p (Ω) contains

an eigentensor X of the tensor B; i.e., BX = μX, X �= 0. On the other hand, using relations (3.7),
we conclude that the tensors W, BW, . . . , B

m−1
W are eigentensors for the tensor A and correspond

to the same eigenvalue λ. Hence, by Theorem 2.2, any linear combination of these tensors, and the
tensor X in particular, is an eigentensor of the tensor A, which corresponds to the eigenvalue λ. Thus,
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we have proved the existence of a common eigentensor for the commutative tensors A and B in the
module C2p(Ω).

Using this lemma, we can prove the following theorem.

Theorem 3.7. A normal tensor in the module C2p(Ω) always has a complete6) orthonormal
system of eigentensors.

Proof. Let A be an arbitrary normal tensor in the module C2p(Ω). In the case under study, the
tensors A and A

∗ commute with each other and hence, by the proof of the above lemma, have a common
eigentensor W1 ∈ Cp(Ω). Then, by Theorem 3.4, we have A 
 W1 = λ1W1 and A

∗ 
 W1 = λ̄1W1,

where W1 �= 0. Let C
(1)
p (Ω) denote a one-dimensional submodule generated by the tensor W1,

and let C
(1)′
p (Ω) denote the orthogonal complement of C

(1)
p (Ω); i.e., Cp(Ω) = C

(1)
p (Ω) + C

(1)′
p (Ω),

where C
(1)
p (Ω) ⊥ C

(1)′
p (Ω). Since C

(1)
p (Ω) is invariant under A and A

∗, it follows from Theorem 3.2

that the submodule C
(1)′
p (Ω) is also invariant under these tensors. Hence, in the invariant submod-

ule C
(1)′
p (Ω), the commuting tensors A and A

∗ have a common eigentensor W2 �=0; i.e., A
W2 =λ2W2

and A
∗ 
 W2 = λ̄2W2. Obviously, W1 ⊥ W2. Let C

(2)
p (Ω) denote the two-dimensional submodule

of the module Cp(Ω), generated by the tensors W1 and W2, and let C
(2)′
p (Ω) denote the orthogonal

complement of C
(2)
p (Ω) (Cp(Ω) = C

(2)
p (Ω) + C

(2)′
p (Ω)), C

(2)
p (Ω) ⊥ C

(2)′
p (Ω). Then we can prove in a

similar way that there exists a common eigentensor W3 of the tensors A and A
∗ in C

(2)′
p (Ω). Obviously,

W3 ⊥ W1 and W3 ⊥ W2. Continuing this process, we obtain np pairwise orthogonal common
eigentensors W1, W2, . . . , Wnp for the tensors A and A

∗:

A 
 Wk = λkWk, A
∗ 
 Wk = λ̄kWk, Wk �= 0, (Wk, Wi) = 0, i �= k, i, k = 1, np. (3.8)

Note that the tensors W1, W2, . . . , Wnp can always be assumed to be normalized; i.e., (Wi, Wj) = δij ,
i, j = 1, np. The proof of the theorem is complete.

This theorem (in particular, relations (3.8)) implies the following statement.

Theorem 3.8. If a tensor A ∈ C2p(Ω) is normal, then each eigentensor of the tensor A is
an eigentensor of the adjoint tensor A

∗; i.e., if A is normal, then A and A
∗ have the same

eigentensors.

The converse statement is also true.

Theorem 3.9. If a tensor A ∈ C2p(Ω) has a complete orthonormal system of eigentensors, then
it is a normal tensor.

Proof. Let A ∈ C2p(Ω) have a complete orthonormal system of eigentensors W1, W2, . . . , Wnp ; i.e.,

A 
 Wi = λiWi, (Wi, Wj) = δij , i, j = 1, np. (3.9)

It is required to prove that A is a normal tensor. Indeed, we set Xk = A
∗ 
 Wk − λ̄kWk. Then, by the

properties of scalar multiplication, we have

(Wi, Xk) = (Wi, A
∗
Wk)− λk(Wi, Wk) = (AWi, Wk)− λk(Wi, Wk) = (λi − λk)δik = 0, i, k = 1, np.

It follows that Xk = A
∗
Wk − λ̄kWk, k = 1, np; i.e.,

A
∗ 
 Wk = λ̄kWk, (Wi, Wk) = δik, i, k = 1, np. (3.10)

From (3.9) and (3.10), we obtain

(A∗ 
 A) 
 Wi = λiλ̄iWi, (A 
 A
∗) 
 Wi = λiλ̄iWi, i = 1, np,

which, in turn, implies A 
 A
∗ = A

∗ 
 A.

6)The complete orthonormal system of tensors of a tensor in the module C2p(Ω) is understood as an orthonormal system
of np tensors, where np is the number of measurements of the module C2p(Ω).
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Thus, along with the “external” (AA
∗ = A

∗
A) characteristic, we obtain the following “inner”

(spectral) characteristic of the normal tensor A ∈ C2p(Ω).

Theorem 3.10. A tensor A ∈ C2p(Ω) is normal if and only if it has a complete orthonormal
system of eigentensors.

This theorem can be reformulated as follows.
Theorem 3.11. A tensor in the module C2p(Ω) is normal if and only if it has a simple structure.

Note that if A ∈ C2p(Ω) is a tensor of simple structure, then it can be represented in the eigenbasis
(canonical basis) as

A =
np∑

i=1

λiWi ⊗ Wi. (3.11)

We see that

A
∗ =

np∑

j=1

λ̄jWj ⊗ Wj , A 
 A
∗ = A

∗ 
 A =
np∑

k=1

λkλ̄kWk ⊗ Wk, (3.12)

and the tensor AA
∗ = A

∗
A has nonnegative eigenvalues.

Theorem 3.12. If A ∈ C2p(Ω) is a normal tensor, then A(A∗) can be represented as a tensor
polynomial in the tensor A

∗(A). Moreover, two polynomials are determined by the characteristic
numbers of the tensor A.

Proof. We use the Lagrange interpolation formula to determine two polynomials F (λ) and G(λ) from
the conditions F (λk) = λ̄k and G(λ̄k) = λk, k = 1, np, where λ1, λ2, . . . , λnp are the eigenvalues of A.
Then from these formulas, (3.11), and the first relation in (3.12), we obtain

F(A) =
np∑

k=1

F (λk)Wk ⊗ Wk =
np∑

k=1

λ̄kWk ⊗ Wk = A
∗,

G(A∗) =
np∑

k=1

G(λ̄k)Wk ⊗ Wk =
np∑

k=1

λkWk ⊗ Wk = A.

Thus, we obtain A
∗ = F(A), A = G(A∗).

Let us prove the following theorem.
Theorem 3.13. If C

′
p(Ω) is a submodule of the module Cp(Ω) invariant under a normal

tensor A ∈ C2p(Ω) and C
′′
p(Ω) is the orthogonal complement of C

′
p(Ω), then C

′′
p(Ω) is also a

submodule invariant under A.

Proof. Let C
′
p(Ω)⊂Cp(Ω) be a submodule invariant under A∈C2p(Ω) and C

′
p(Ω) + C

′′
p(Ω) = Cp(Ω),

C
′
p(Ω) ⊥ C

′′
p(Ω). Then, by Theorem 3.2, the submodule C

′′
p(Ω) is invariant under A

∗. But, by Theo-
rem 3.12, we have A = G(A∗), where G(λ) is a polynomial. Therefore, C

′′
p(Ω) is invariant under A. The

proof of the theorem is complete.

Now we consider a Hermitian tensor. Since it is a specific form of a normal tensor, all the theorems
and relations proved for normal tensors remain valid for Hermitian tensors. The following theorem
expresses the “internal” characteristic of the Hermitian tensor along with its “external” (A∗ = A)
characteristic.

Theorem 3.14. A tensor H of the module C2p(Ω) is Hermitian (self-adjoint) if and only if it
has a complete orthonormal system of eigentensors with real eigenvalues.
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Proof. Let the tensor H ∈ C2p(Ω) be a Hermitian tensor. We must prove that it has real characteristic
numbers. Indeed, since the Hermitian tensor is a specific form of the normal tensor, by Theorem 3.10, it
has a complete orthonormal system of eigentensors and can be represented as

H =
np∑

i=1

λiWi ⊗ Wi, (Wi, Wj) = Wi 
 Wj = δij , i, j = 1, np. (3.13)

Then, obviously, H
∗ =

np∑
i=1

λ̄iWi ⊗ Wi, and relation H
∗ = H implies that λi = λ̄i, i = 1, np. Conversely,

we assume that a tensor H ∈ C2p(Ω) has a complete orthonormal system of eigentensors with real
eigenvalues. It is required to prove that it is a Hermitian tensor. Indeed, by Theorem 3.10, such a tensor
is a normal tensor and can be represented as (3.13). From this, taking into account λi = λ̄i, we obtain

H
∗ =

np∑
i=1

λiWi ⊗ Wi. From this relation and (3.13), we conclude that H
∗ = H.

Now we consider a unitary tensor. First, we introduce the definition.

Definition 3.7. A tensor A ∈ C2p(Ω) is said to be unitary if its inverse coincides with the adjoint
(A 
 A

∗ = E).

Hence the unitary tensor is a special form of a normal tensor and all the theorems and relations proved
for normal tensors remain valid for unitary tensors.

A theorem for a unitary tensor in the module C2p(Ω), which is similar to Theorem 3.14 and which
expresses its “internal” characteristic along with its “external” characteristic (U 
 U

∗ = E), is stated as
follows.

Theorem 3.15. A tensor U ∈ C2p(Ω) is unitary if and only if it has a complete orthonormal
system of eigentensors with eigenvalues whose moduli are equal to unity.

Proof. Let U be a unitary tensor. It is required to prove that it has a complete orthonormal system of
eigentensors with characteristic numbers whose moduli are equal to unity. Indeed, since a unitary tensor
is a special case of a normal tensor, it follows from Theorem 3.10 that it has a complete orhtonormal
system of tensors and the representation

U =
np∑

i=1

λiWi ⊗ Wi, (Wi, Wj) = δij , i, j = 1, np, (3.14)

which implies

U
∗ =

np∑

j=1

λ̄jWj ⊗ Wj . (3.15)

We use (3.14), (3.15), and the fact that the tensor U is unitary to obtain

U 
 U
∗ = U

∗ 
 U =
np∑

i=1

λiλ̄iWi ⊗ Wi = E =
np∑

j,k=1

δjkWj ⊗ Wk,

which implies

λiλ̄i = |λi|2 = 1, i = 1, np. (3.16)

Conversely, let a tensor U ∈ C2p(Ω) have a complete orthonormal system of eigentensors with
characteristic numbers whose moduli are equal to unity. Then we have relations (3.14)–(3.16), which
imply U 
 U

∗ = U
∗ 
 U = E. The proof of the theorem is complete.

We note that this paper was designed by using the remarkable books [14–16].
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