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Abstract—We consider various forms of equations of motion and heat influx for deformable solids
as well as various forms of Hooke’s law and Fourier’s heat conduction law under the nonclassical
parametrization [1–5] of the domain occupied by a thin solid, where the transverse coordinate ranges
in the interval [0, 1]. We write out several characteristics inherent in this parametrization. We use
the above-mentioned equations and laws to derive the corresponding equations and laws, as well
as statements of problems, for thin bodies in moments with respect to Chebyshev polynomials of
the second kind. Here the interval [0, 1] is used as the orthogonality interval for the systems of
Chebyshev polynomials. For this interval, we write out the basic recursion relations and, in turn, use
them to obtain several additional recursion relations, which play an important role in constructing
other versions of the theory of thin solids. In particular, we use the recursion relations to obtain the
moments of the first and second derivatives of a scalar function, of rank one and two tensors and their
components, and of some differential operators of these variables. Moreover, we give the statements
of coupled and uncoupled dynamic problems in moments of the (r, N)th approximation in moment
thermomechanics of thin deformable solids. We also state the nonstable temperature problem in
moments of the (r, N)th approximation.
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1. GENERATING FUNCTION. BASIC RECURSION RELATIONS
FOR CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

The polynomials

Un(x) =
1

n + 1
T ′

n+1(x), −1 ≤ x ≤ 1, n ∈ N0, (1.1)

where N0 is the set of nonnegative integers and the Tn(x) = cos(n arccos x), x ∈ [−1, 1], n ∈ N0, are
Chebyshev polynomials of the first kind, are called Chebyshev polynomials of the second kind [6–10] on
the interval [−1, 1]. They are orthogonal polynomials on this interval with weight h(x) =

√
1 − x2.

By definition, these polynomials and the orthonormal polynomials Ûn(x) can be represented as

Un(x) =
sin[(n + 1) arccos x]√

1 − x2
, Ûn(x) =

1
‖Un‖ Un(x),

‖Un‖ =
√

π

2
, −1 ≤ x ≤ 1, n ∈ N0.

(1.2)

Using the generating function [6] F (r, x) = 1/(1 − 2rx + r2), |r| < 1, |x| ≤ 1, of Chebyshev polyno-
mials of the second kind and proceeding, for example, as was done in [10] for Legendre polynomials, one
can readily prove the formulas

2xUn(x) = Un−1(x) + Un+1(x), xU ′
n(x) = nUn(x) + U ′

n−1(x), n ≥ 1,

U ′
n(x) = 2nUn−1(x) + U ′

n−2(x), n ≥ 2.
(1.3)
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Note that the first relation in (1.3) can be derived directly [10] from the first formula in (1.2).
Now consider the linear transformation x = 2t − 1, 0 ≤ t ≤ 1, which takes the interval [0, 1] to the

interval [−1, 1]. Then, by the theorem on linear transformations of the orthogonality interval [10, 11], the
system of polynomials

U∗
n(t) ≡ Un(2t − 1) =

sin[(n + 1) arccos(2t − 1)]
2
√

t(1 − t)
, 0 ≤ t ≤ 1, n ∈ N0, (1.4)

which are called shifted Chebyshev polynomials of the second kind, is orthogonal.
Hence, by analogy with the second formula in (1.2), the orthonormal shifted Chebyshev polynomials

of the second kind can be represented as

Û∗
n(t) =

1
‖U∗

n‖
U∗

n(t) =
1

‖U∗
n‖

sin[(m + 1) arccos(2t − 1)]
2
√

t(1 − t)
, ‖U∗

n‖ =
√

π

2
, n ∈ N0. (1.5)

Further, proceeding as above and using the generating function F ∗(r, t) = 1/[(1 + r)2 − 4rt], |r|< 1,
t ∈ [0, 1], we can obtain the basic recursion relations for shifted Chebyshev polynomials of the second
kind (1.4) on the interval [0, 1]. We have

4tU∗
n(t) = U∗

n−1(t) + 2U∗
n(t) + U∗

n+1(t), n ≥ 1,

2tU∗′
n (t) = 2nU∗

n(t) + U∗′
n−1(t) + U∗′

n (t), n ≥ 1,

U∗′
n (t) = 4nU∗

n−1(t) + U∗′
n−2(t), n ≥ 2.

(1.6)

2. ADDITIONAL RECURSION RELATIONS FOR CHEBYSHEV POLYNOMIALS
OF THE SECOND KIND ON THE INTERVAL [0, 1]

These recursion relations can be obtained from (1.6) in the same way as some of their analogs for
Legendre polynomials in [11]. Therefore, we do not derive them here but only write out the relations used
most frequently:

22stsU∗
k (t) =

2s∑
p=0

(
2s
p

)
U∗

k−s+p(t), k − s ≥ 0, k ∈ N0, (2.1)

22(k+1)tk+1U∗
k (t) =

2k+2∑
p=1

(
2k + 2

p

)
U∗

p−1(t), k ∈ N0, (2.2)

22(k+s)tk+sU∗
k (t) = −

s∑
q=2

(
2k + 2s
q − 2

)
U∗

s−q(t) +
2k+2s∑
p=s

(
2k + 2s

p

)
U∗

p−s(t), k ∈ N0, s ≥ 2, (2.3)

22stsU∗
m(t)U∗

n(t) =
m∑

p=0

2s∑
q=0

(
2s
q

)
U∗

n−m−s+2p+q(t), n − m − s ≥ 0, (2.4)

U∗′
n (t) = 4

[(n−1)/2]∑
k=0

(n − 2k)U∗
n−(2k+1)(t) = 4

[(n−1)/2]∑
k=0

(2k + 1 + a)U∗
2k+a(t), n ≥ 1, (2.5)

U∗′′
n (t) = 24

[(n−2)/2]∑
k=0

(k + 1)(n − k)[n − (2k + 1)]U∗
n−(2k+2)(t)

= 22

[(n−2)/2]∑
k=0

(2k + 2 − a)[(n + 1)2 − (2k + 2 − a)2]U∗
2k+1−a(t), n ≥ 2, (2.6)

MECHANICS OF SOLIDS Vol. 42 No. 3 2007



SOME ISSUES CONCERNING A VERSION OF THE THEORY OF THIN SOLIDS 393

22stsU∗′
n (t) = 4

(n−s−2)/2∑
k=0

2s∑
p=0

(n − 2k)
(

2s
p

)
U∗

p−u(t) + 4s
2s∑

p=1

(
2s
p

)
U∗

p−1(t)

+ 4
[(n−1)/2]∑

k=(n−s+2)/2

(n − 2k)
[
−

u∑
q=2

(
2s

q − 2

)
U∗

u−q(t) +
2s∑

p=u

(
2s
p

)
U∗

p−u(t)
]
,

u = 2k + 1 + s − n, n − s = 2l, l ≥ 0, n ≥ 1, s ≥ 0,

(2.7)

22stsU∗′
n (t) = 4

(s−a−2)/2∑
k=0

(2k + 1 + a)
[
−

v∑
q=2

(
2s

q − 2

)
U∗

v−q(t) +
2s∑

p=v

(
2s
p

)
U∗

p−v(t)
]

+ 4
[(n−1)/2]∑

k=(s−a)/2

2s∑
p=0

(2k + 1 + a)
(

2s
p

)
U∗

p−v(t),

v = s − 2k − a, n − s = 2l + 1, l ≥ 0, n ≥ 1, s ≥ 0,

(2.8)

22stsU∗′
n (t) = 4

[(n−1)/2]∑
k=0

(2k + 1 + a)
[
−

v∑
q=2

(
2s

q − 2

)
U∗

v−q(t) +
2s∑

p=v

(
2s
p

)
U∗

p−v(t)
]
,

v = s − 2k − a, s − n ≥ 1, n ≥ 1,

(2.9)

22stsU∗′′
n (t) = 24

(n−s−2)/2∑
k=0

2s∑
p=0

(k + 1)(n − k)[n − (2k + 1)]
(

2s
p

)
U∗

p−r(t),

+ 24

[(n−2)/2]∑
k=(n−s)/2

(k + 1)(n − k)[n − (2k + 1)]
[
−

r∑
q=2

(
2s

q − 2

)
U∗

r−q(t) +
2s∑

p=r

(
2s
p

)
U∗

p−r(t)
]
,

r = 2k + 2 + s − n, n ≥ 2, n − s = 2l, l ≥ 0, s ≥ 0,

(2.10)

22stsU∗′′
n (t) = 24

(n−s−3)/2∑
k=0

2s∑
p=0

(k + 1)(n − k)[n − (2k + 1)]
(

2s
p

)
U∗

p−r(t)

+ 22s[(n + 1)2 − s2]
s∑

p=1

(
2s
p

)
U∗

p−1(t)

+ 24

[(n−2)/2]∑
k=(n−s+1)/2

(k + 1)(n − k)[n − (2k + 1)]
[
−

r∑
q=2

(
2s

q − 2

)
U∗

r−q(t) +
2s∑

p=r

(
2s
p

)
U∗

p−r(t)
]
,

r = 2k + 2 + s − n, n ≥ 2, n − s = 2l + 1, l ≥ 0, s ≥ 0,

(2.11)

22stsU∗′′
n (t) = 22

[(n−2)/2]∑
k=0

(2k + 2 − a)[(n + 1)2 − (2k + 2 − a)2]
[
−

m∑
q=2

(
2s

q − 2

)
U∗

m−q(t)

+
2s∑

p=m

(
2s
p

)
U∗

p−m(t)
]
, m = s − 2k − 1 + a, n ≥ 2, s − n ≥ 1. (2.12)

Here a= n− 1− 2[(n− 1)/2], [x] is the integer part of a number x, and
(
m
n

)
are the binomial coefficients.

It should be noted that all relations (2.2)–(2.12), which are also given in [12] and, except for (2.4), remain

valid for the system {Û∗
k}∞k=0 of orthonormal Chebyshev polynomials of the second kind, can be proved

by induction.
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For the system of orthonormal polynomials, (2.4) can be represented as

22stsÛ∗
m(t)Û∗

n(t) = Û∗
0

m∑
p=0

2s∑
q=0

(
2s
q

)
Û∗

n−m−s+2p+q(t), n − m − s ≥ 0. (2.13)

A relation similar to (2.2) for Chebyshev polynomials of first kind is given in [13] as an exercise. The
relations obtained from (2.4) for s = 0 and m = n − 1, as well as for s = 0 and m = n = k − 1, can also
be found there.

3. REPRESENTATION OF SOME DIFFERENTIAL OPERATORS APPLIED TO TENSORS
AND OF THE EQUATIONS OF MOTION IN MECHANICS OF DEFORMABLE SOLIDS

We consider the representations of the gradient, divergence, rotor, repeated gradient, Laplacian, and
repeated divergence of a tensor, as well as the equations of motion in stresses and couple stresses for the
new parametrization of the domain occupied by a thin solid. Prior to finding these representations, we
recall basic facts concerning the parametrization of the domain occupied by a thin solid [1–5]. The new
parametrization consists in determining the position vector of an arbitrary point of the domain occupied
by the thin solid in the form

r(x′, x3) = (1 − x3)
(−)

r (x′) + x3(+)

r (x′) =
(−)

r (x′) + x3h(x′), x′ = (x1, x2), x3 ∈ [0, 1],

where
(−)

r (x′) and
(+)

r (x′), respectively, determine the interior
(−)

S and exterior
(+)

S base surfaces of the thin

solid. In our case, the vector h(x′) =
(+)

r (x′) =
(−)

r (x′), taking the interior base surface
(−)

S onto the exterior

base surface
(+)

S is assumed to be perpendicular to the interior base surface. The basis vectors rp and rp at
an arbitrary point of the domain occupied by the thin solid and the basis vectors rm− , rm−

and rm+ , rm+

at the corresponding points on the interior and exterior base surfaces are related to each other by the
transition components1) of the unit tensor of the second rank [1–5]:

rp = gm−
p rm− = gpm+rm+

, rp = gp
m−rm−

= gp
m+rm+

. (3.1)

Relations (3.1) remain valid when the indices are raised or lowered. Next, note that

gP
M− =

(−)

ϑ−1AP
M− ,

(−)

ϑ = det(gJ−
I ), g3

M− = −g3−
P gP

M− , g3−
P = x3g3−

P+ ,

g3−
P+ = ∂P lnh, h = |h|, AP

M− ≡ gP−
M− + x3aP

M+ , aP
M+ ≡ (gI−

I+ − 1)gP−
M− − gP−

M+ .
(3.2)

Owing to the first and second relations in (3.2), from the second relation in (3.1) we obtain

rP = gP
M−rM−

, r3 = g3
M−rM−

+ r3−= r3−− g3−
P rP= r3−− g3−

P gP
M−rM−

. (3.3)

3.1. Representations of gradient, divergence, and rotor

The repeated gradient operator can be applied to any tensor. Therefore, denoting some tensor quantity
by F(x′, x3), by the definition of gradient [14–17] and from (3.3) we have

grad F=∇F=rp∂pF=rP ∂P F+r3∂3F = rP (∂P −g3−
P ∂3)F+r3−∂3F = rM−

gP
M−(∂P −g3−

P ∂3)F+r3−∂3F.

Thus, introducing the differential operator

Np = ∂p − g3−
p ∂3, N = rpNp = rP NP = rM−

gP
M−NP , N3 = 0, (3.4)

we obtain the desired representation of the gradient in the form

grad F = ∇F = rP NP F + r3−∂3F = rM−
gP
M−NP F + r3−∂3F. (3.5)

1)The conventional rules of tensor calculus [14–17] are used. We preserve the main notation and relations used in earlier
papers.
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The divergence operator can be applied to a tensor whose rank is greater than or equal to 1. Applying
this operator, for example, to a rank two tensor P

˜
P and using its definition, the third relation in (3.2),

and (3.4), we obtain

divP
˜
P = ∇ ·P

˜
P = rp · ∂pP

˜
P = ∇pPp = ∇p(g

p
m−Pm−

) = gp
m−∇pPm−

= gP
M−∇P PM−

+ g3
M−∇3PM−

+ ∂3P3−= gP
M−(∇P − g3−

P ∇3)PM−
+ ∂3P3−= gP

M−NP PM−
+ ∂3P3− ;

i.e., the desired representation of the divergence operator of the tensor of the second kind has the form

divP
˜
P = gP

M−NPPM−
+ ∂3P3− (3.6)

It is easy to see that the expression for the divergence of the vector u in (3.6) can be obtained if P
˜
P

and PM−
in this relation are replaced by u and uM−

, respectively. We also note that (3.6) readily follows
from (3.5) if F in it is replaced by P

˜
P = rn−Pn− and the tensor multiplication symbol, which is omitted by

agreement, is replaced by the scalar multiplication symbol.
The rotor operator can also be applied to a tensor of rank greater than or equal to 1. Its representation

can be obtained by analogy with (3.6) or from (3.5). We derive the representation of rotu from (3.5).
Using the definition of rotor, it suffices to replace F in (3.5) by u and replace the tensor multiplication
symbol by the vector multiplication symbol. After transformations, we obtain the desired representation
in the form

rotu = ∇× u = CL−M−
(gP

M−NP u3− −∇3uM−)rL− + CM−N−
gP
M−NP uN−r3− (3.7)

Here CM−N−
= (rM−× rN−

) · r3− are the components of the discriminant tensor.

3.2. Representations of repeated gradient, Laplacian, and repeated divergence

The gradient operator can be applied to a tensor of any rank. Applying it to some tensor symbol F,
by (3.5), we obtain

grad grad F = ∇∇F = rM−
gP
M−NP (∇F) + r3−∂3(∇F). (3.8)

Using the third relation in (3.4), we obtain

NP (∇F) = NP (rq∂qF) = NP (rn−gq
n−∂qF) = rn−NP (gq

n−∂qF)

= rN−
NP (gq

N−∂qF) + r3−NP (∂3F) = rN−
NP (gQ

N−∂QF) + r3−NP (∂3F).

We represent the first term on the right-hand side in the last relation in a different form. According
to (3.4), we obtain

NP (gQ
N−NQF) = NP (gq

N−NqF) = gq
N−NP (NqF) = gQ

N−NP (NQF) + g3
N−NP (N3F) = gQ

N−NP (NQF).

Thus,

NP (∇F) = rN−
NP (gQ

N−NQF) + r3−NP (∂3F) = rN−
gQ
N−NP NQF + r3−NP ∂3F. (3.9)

In a similar way, according to the third relation in (3.4), we obtain

∂3(∇F) = rN−
∂3(g

Q
N−NQF) + r3−∂2

3F = rN−
gQ
N−∇3NQF + r3−∂2

3F. (3.10)

Taking into account (3.9) and (3.10), from (3.8) we obtain two desired representations of the repeated
gradient operator, one of which has the form

∇∇F = rM−
rN−

gP
M−gQ

N−NP NQF + rM−
r3−gP

M−NP ∂3F + r3−rN−
gQ
N−∇3NQF + r3−r3−∂2

3F. (3.11)

Let us give another, more expanded form of the representation of this operator. It follows from (3.3) that,
after transformations, we obtain

∇∇F = rM−
rN−

gP
M−gQ

N− [∇P∇Q − (∂3−
P ∇3∇Q + g3−

Q ∇P∇3) + g3−
P g3−

Q ∇3∇3]F
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396 NIKABADZE

+[rM−
r3−gP

M−NP∇3 + r3rN−
gQ
N−∇3NQ + r3−r3−∇3∇3]F. (3.12)

If the representations (3.11) and (3.12) of the repeated gradient operator are known, then this operator
readily implies representations of the Laplacian and repeated divergence. Indeed, the Laplacian (the
gradient divergence) can be applied to any quantity. We find its representation from (3.12) if, on the
left-hand side between the Hamiltonian nabla-operators and on the right-hand side between the basis
vectors, we replace the tensor multiplication symbol by the scalar multiplication symbol. As a result, we
obtain

∆F = ∇ ·∇F = gM−N−
gP
M−gQ

N− [∇P∇Q − (g3−
P ∇3∇Q + g3−

Q ∇P∇3) + g3−
P g3−

Q ∇2
3]F + g3−3−∇2

3F. (3.13)

When deriving (3.13), we have taken into account the fact thatgM−3−= rM−· rM−
= 0.

The repeated divergence operator is applied to a tensor whose rank is greater than 1. Therefore, by
taking, say, a tensor P

˜
P of the second rank for F and by using the definition of this operator, from (3.12)

we obtain

div divP
˜
P = ∇ · (∇ ·P

˜
P) = gP

M−gQ
N− [∇P∇Q − (g3−

P ∇3∇Q + g3−
Q ∇P∇3) + g3−

P g3−
Q ∇2

3]P
N−M−

+gP
M−NP∇3P

3−M−
+ gQ

N−∇3NQPN−3−+ ∇2
3P

3−3−. (3.14)

It should be noted that, by analogy with (3.13) and (3.14), from (3.12) one can obtain the representa-
tion of the repeated rotor operator and the inconsistency operator InkQ

˜
Q = ∇× (∇× P

˜
P)T , where Q

˜
Q is a

tensor of the second rank. For brevity, we do not consider this in detail. We only note that gP
M− , gP

M−gQ
N− ,

and gPQ can be represented [12] via x3 in the form of series,

gP
M− =

∞∑
s=0

A
(s)

P−
M+(x3)s, gP

M−gQ
N− =

∞∑
s=0

B
(s)

P−Q−
M+N+ ,

gPQ = gP
M−gQ

N−gM−N−
=

∞∑
s=0

(s + 1)gQ−M−
A
(s)

P−
M+(x3)s.

(3.15)

Here we have introduced the notation

A
(s)

P−
M+ = (gP−

N−
1
− gP−

N+
1
) · (gN−

1

N−
2

− g
N−

1

N+
2

) · . . . · (gN−
s−2

N−
s−1

− g
N−

s−2

N+
s−1

) · (gN−
s−1

M− − g
N−

s−1

M+ ),

A
(0)

P−
M+ = gP−

M− , B
(s)

P−Q−
M+N+ =

s∑
r=0

A
(s−r)

P−
M+A

(r)

Q−
N+ .

(3.16)

3.3. Representations of equations of motion in moment mechanics of deformable solids

As is known [18–22], the equations of motion in stress and couple stress tensors can be repre-
sented as

∇ · P
˜
P + ρF = ρ∂2

t u, ∇ · µ
˜
µ + C

˜
C
¯
C ·· P

˜
PT + ρm = J

˜
J · ∂2

t ϕ. (3.17)

Here P
˜
P and µ

˜
µ are the of true and couple stress tensors, C

˜
C is the discriminant tensor (a tensor of third

rank) [14], u is the displacement vector, ϕ is the vector of (intrinsic) rotation, ρ is the material density in
the actual configuration, F is the mass force density, m is the the mass moment density, and g = det(gij)
is the determinant of the fundamental matrix. The superscript “T ” denotes the operation of transposition.
Following the argument used in [23] for the equations of classical mechanics of deformable solids (MDS)
in the classical parametrization of the domain occupied by a thin solid, in our case from (3.17) we obtain
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the following form of the representation of equations of the moment MDS:

1√
(−)
g

∂P

(√(−)
g

(−)

ϑPP
)

+ ∂3

((−)

ϑP3
)

+ ρ
(−)

ϑF = ρ
(−)

ϑ∂2
t u,

1√
(−)
g

∂P

(√(−)
g

(−)

ϑµP
)

+ ∂3

((−)

ϑµ3
)

+ C ·· ((−)

ϑP
˜
PT

)
+ ρ

(−)

ϑm =
(−)

ϑJ
˜
J · ∂2

t ϕ,

(−)
g = det(gm−n−), gm−n− = rm− · rn− .

(3.18)

It is easy to see that, by (3.6), we can rewrite Eqs. (3.17) in the form

gP
M−NP PM−

+ ∂3P3 + ρF = ρ∂2
t u, gP

M−NP µM−
+ ∂3µ

3−+ C
˜
C
¯
C ··P

˜
PT + ρm = J

˜
J · ∂2

t ϕ. (3.19)

Moreover, we have

gP
M−NP PM−

= gP
m−NP Pm−

= NP (gP
m−Pm−

) = NP (gP
M−PM−

) = NP PP .

Therefore, Eqs. (3.19) can be represented in the following forms:

NPPP + ∂3P3−+ ρF = ρ∂2
t u, NP µP + ∂3µ

3−+ C
˜
C
¯
C ·· P

˜
PT + ρm = J

˜
J · ∂2

t ϕ,

NP (gP
M−PM−

) + ∂3P3−+ ρF = ρ∂2
t u, NP (gP

M−µM−
) + ∂3µ

3−+ C
˜
C
¯
C ··P

˜
PT + ρm = J

˜
J · ∂2

t ϕ.
(3.20)

Multiplying each relation in (3.19) by
(−)

ϑ and taking into account the first relation in (3.2), we obtain

AP
M−NP PM−

+
(−)

ϑ∂3P3−+ ρ
(−)

ϑF = ρ
(−)

ϑ∂2
t u,

AP
M−NP µM−

+
(−)

ϑ∂3µ
3−+ C

˜
C
¯
C ·· ((−)

ϑP
˜
PT

)
+ ρ

(−)

ϑm =
(−)

ϑJ
˜
J · ∂2

t ϕ.

(3.21)

We note that (3.18)–(3.21) are different forms of the representation of the equations of the moment
MDS (3.17) for the considered parametrization of the domain occupied by the thin solid. We refer to them
as various representations of the equations of moment mechanics of thin deformable solids (moment
MTDS) for the new parametrization of the domain occupied by the thin solid.

Taking into account the first relation in (3.15), we can rewrite Eq. (3.19) in the form
∞∑

s=0

AP−
M+(x3)sNP PM−

+ ∂3P3−+ ρF = ρ∂2
t u,

∞∑
s=0

AP−
M+(x3)sNP µM−

+ ∂3µ
3−+ C

˜
C
¯
C ·· P

˜
PT + ρm = J

˜
J · ∂2

t ϕ.

(3.22)

One can see that Eqs. (3.22) contain infinitely many terms. Therefore, they cannot be used in practice.
Naturally, the approximated equations with finitely many terms must be considered. In this connection,
we introduce the following definition.

Definition 3.1. The equations obtained from (3.19) with the first r + 1 terms preserved in the
expansion of gP

M− are called equations of the rth approximation.

The latter can be written in the form

g
(r)

P
M−NP PM−

+ ∂3P3−+ ρF = ρ∂2
t u, g

(r)

P
M−NP µM−

+ ∂3µ
3−+ C

˜
C
¯
C ··P

˜
PT + ρm = J

˜
J · ∂2

t ϕ, (3.23)

g
(r)

P
M− =

r∑
s=m

AP−
M+(x3)m. (3.24)

From (3.23), for r = 0, we obtain the equations of the zeroth approximation, for r = 1, we obtain the
equations of the first approximation, etc.
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3.4. Representation of the heat influx equation in the moment MTDS
In the general case, the heat influx equation in the moment MTDS can be written in the form [24]

−∇ · q + ρq − T
d

dt
(a
˜
a ·· P

˜
PT + d

˜
d ·· µ

˜
µT ) + W ∗ = ρcp∂tT, (3.25)

where q is the external heat flux vector, q is the mass heat influx, T is temperature, a
˜
a and d

˜
d are the

thermal expansion tensors, P
˜
P �= P

˜
PT is the stress tensor, µ

˜
µ �= µ

˜
µT is the couple stress tensor, W ∗ is

the scattering function, ρ is the medium density, and cp is the heat capacity under constant pressure.
If we consider a physically linear medium, then the nonlinearity in (3.25) manifests itself in the third
term on the left-hand side. A similar picture also occurs in the special version of this equation, which is
obtained from (3.25) for d

˜
d = 0 [25]. In the last case, since both of the heat capacities cp and cv (the heat

capacity under constant volume) cannot simultaneously be constant (independent of temperature), it is
frequently assumed that the temperature T in this term is replaced by the temperature T0 = const. With
this assumption taken into account, the desired representation of the heat influx equation, by analogy
with (3.19), has the form

−gP
M−NP qM−− ∂3q

3−+ ρq − T0
d

dt
(a
˜
a ··P

˜
PT + d

˜
d ·· µ

˜
µT ) + W ∗ = ρcp∂tT. (3.26)

If necessary, one can easily write out other relations similar to (3.18) and (3.21). Therefore, for brevity,
we do not dwell upon this. We only note that, on the basis of (3.26), by analogy with (3.23), the heat influx
equation in the rth approximation can be written as

−g
(r)

P
M−NP qM−− ∂3q

3−+ ρq − T0
d

dt
(a
˜
a ··P

˜
PT + d

˜
d ·· µ

˜
µT ) + W ∗ = ρcp∂tT. (3.27)

3.5. Representations of Hooke’s law and Fourier’s thermal conduction law
In the linear moment theory of elasticity, owing to the generalized Duhamel–Neumann princi-

ple [24, 25], Hooke’s law in nonisothermal processes can be represented in the form

P
˜
P = C

˜
C
˜
C ·· (γ

˜
γ − a

˜
aϑ) + A

˜
A
˜
A ·· (κ

˜
κ − d

˜
dϑ), µ

˜
µ = D

˜
D
˜
D ·· (κ

˜
κ − d

˜
dϑ) + B

˜
B
˜
B ·· (γ

˜
γ − a

˜
aϑ), (3.28)

where γ
˜
γ =∇u−C

˜
C
¯
C ·ϕ is the strain tensor in moment theory [21], κ

˜
κ =∇ϕ is the torsion–bending tensor,

C
˜
C
˜
C, A

˜
A
˜
A, D

˜
D
˜
D, B

˜
B
˜
B are the material tensors of rank four, and ϑ is the temperature difference.

Taking into account the expression for γ
˜
γ, we can rewrite (3.28) in the form

P
˜
P = C

˜
C
˜
C ·· ∇u + A

˜
A
˜
A ·· ∇ϕ − C

˜
C
˜
C ·· C

˜
C
¯
C · ϕ − b

˜
bϑ, µ

˜
µ = D

˜
D
˜
D ·· ∇ϕ + B

˜
B
˜
B ·· ∇u− B

˜
B
˜
B ··C

˜
C
¯
C · ϕ − β

˜
βϑ,

b
˜
b = C

˜
C
˜
C ·· a

˜
a + A

˜
A
˜
A ·· d

˜
d, β

˜
β = D

˜
D
˜
D ·· d

˜
d + B

˜
B
˜
B ·· a

˜
a.

(3.29)

Here b
˜
b and β

˜
β are the tensors of thermomechanical properties.

We note that the special case of the law (3.29) was considered in [21, 22], and more general relations
can be found in [24, 26].

Now one can easily find the desired representations of Hooke’s law (3.29) for the new parametrization
of the domain occupied by the thin solid. Indeed, using the operator (3.4), after simple transformations,
we see from (3.29) that

P
˜
P = C

˜
C
¯
CM−· gP

M−NP u + C
˜
C
¯
C3−· ∂3u + A

˜
A
¯
AM−· gP

M−NP ϕ + A
˜
A
¯
A3−· ∂3ϕ − C

˜
C
˜
C ·· C

˜
C
¯
C · ϕ − b

˜
bϑ,

µ
˜
µ = D

˜
D
¯
DM−· gP

M−NP ϕ + D
˜
D
¯
D3−· ∂3ϕ + B

˜
B
¯
BM−· gP

M−NP u + B
˜
B
¯
B3−· ∂3u −B

˜
B
˜
B ·· C

˜
C
¯
C · ϕ − β

˜
βϑ,

C
˜
C
¯
Cm−

= C
˜
C
˜
C · rm−

, A
˜
A
¯
Am−

= A
˜
A
˜
A · rm−

, D
˜
D
¯
Dm−

= D
˜
D
˜
D · rm−

, B
˜
B
¯
Bm−

= B
˜
B
˜
B · rm−

.

(3.30)

Taking into account the first relation in (3.15), we easily see that relations (3.30) contain infinitely
many terms. Therefore, they cannot be used in this form. In applications, approximate constitutive
equations (CE) are usually used, i.e., relations whose can be represented by using finitely many terms.
In this connection, we introduce the following definition.
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Definition 3.2. Relations obtained from (3.30) under the condition that the first s + 1 terms are
preserved in the expansion of gP

M− are called the constitutive equations (CE) of the sth approximation.

It is easily seen that the CE of the sth approximation, by analogy with Eqs. (3.23) and (3.27), can be
represented as

P
˜
P(s) = C

˜
C
¯
CM−· g

(s)

P
M−NPu + C

˜
C
¯
C3−· ∂3u + A

˜
A
¯
AM−· g

(s)

P
M−NP ϕ + A

˜
A
¯
A3−· ∂3ϕ − C

˜
C
˜
C ·· C

˜
C
¯
C · ϕ − b

˜
bϑ,

µ
˜
µ(s) = D

˜
D
¯
DM−· g

(s)

P
M−NP ϕ + D

˜
D
¯
D3−· ∂3ϕ + B

˜
B
¯
BM−· g

(s)

P
M−NP u + B

˜
B
¯
B3−· ∂3u − B

˜
B
˜
B ·· C

˜
C
¯
C · ϕ − β

˜
βϑ.

(3.31)

Definition 3.2. Relations obtained from (3.31) for s=0 are called the CE of the zeroth approximation,
and those obtained for s = 1 are called the CE of the first approximation.

It is easily seen that the CE of the zeroth approximation have the form

P
˜
P(0) = C

˜
C
¯
CM−· NP u + C

˜
C
¯
C3−· ∂3u + A

˜
A
¯
AM−· NP ϕ + A

˜
A
¯
A3−· ∂3ϕ − C

˜
C
˜
C ·· C

˜
C
¯
C · ϕ − b

˜
bϑ,

µ
˜
µ(0) = D

˜
D
¯
DM−· NP ϕ + D

˜
D
¯
D3−· ∂3ϕ + B

˜
B
¯
BM−· NP u + B

˜
B
¯
B3−· ∂3u −B

˜
B
˜
B ·· C

˜
C
¯
C · ϕ − β

˜
βϑ,

(3.32)

and the CE of the first approximation can be written as

P
˜
P(s) = P

˜
P(s−1) + C

˜
C
¯
CM−· A

(s)

P−
M+(x3)sNP u + A

˜
A
¯
AM−· A

(s)

P−
M+(x3)sNP ϕ,

µ
˜
µ(s) = µ

˜
µ(s−1) + D

˜
D
¯
DM−· A

(s)

P−
M+(x3)sNP ϕ + B

˜
B
¯
BM−· A

(s)

P−
M+(x3)sNPu, s ≥ 1.

(3.33)

We find the corresponding expression for Fourier’s thermal conduction law for the new parametriza-
tion of the domain occupied by the thin solid. Since Fourier’s thermal conduction law [22, 25] has
the form q = −Λ

˜
Λ · ∇T , where the positive definite tensor of the second rank Λ

˜
Λ is called the thermal

conduction tensor, according to (3.5), Fourier’s thermal conduction law of the sth approximation can be
represented in the form

q(s) = −ΛM−· g
(s)

P
M−NP T − Λ3−∂3T, Λm−

= Λ
˜
Λ · rm−

. (3.34)

Hence, for Fourier’s thermal conduction law of the zeroth approximation and the sth approxima-
tion (3.34), by analogy with (3.32) and (3.33), we have the expressions

q(0) = −ΛM−· NP T − Λ3−∂3T, q(s) = q(s−1) − ΛM−· A
(s)

P
M−NP T, s ≥ 1. (3.35)

4. TO THE THEORY OF MOMENTS WITH RESPECT TO THE SYSTEM OF
ORTHONORMAL CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

We consider some tensor field F(x1, x2, x3) depending on the coordinates x1, x2, x3 of the domain oc-
cupied by a thin solid for its new parametrization [1, 2, 4]. By the thin solid we mean a three-dimensional
solid one or two of whose dimensions is/are small compared with the other dimensions. In what follows,
we mainly consider a thin solid one of whose dimensions is small compared with the other. For brevity,
just as above, instead of F(x1, x2, x3) we write F(x′, x3), where x′ = (x1, x2), x3 ∈ [0, 1]. Moreover, we
assume that the tensor fields under study are sufficiently smooth. For example, F(x′, x3) ∈ Cm(V ∪ ∂V ),
m ≥ 1, where V is the domain occupied by the thin solid and ∂V is its boundary. Then the tensor

field F(x′, x3) with respect to the coordinate x3 ∈ [0, 1] for each fixed point x′ ∈
(−)

S (the interior base
surface) can be expanded in a series in a system of shifted orthonormal Chebyshev polynomials of the
second kind {Û∗

k}∞k=0 [10]. This representation has the form

F(x′, x3) =
∞∑

k=0

(k)

F(x′)Û∗
k (x3), x′ ∈

(−)

S , x3 ∈ [0, 1], (4.1)
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where
(k)

F(x′) is called the kth coefficient in the expansion of F(x′, x3) in a series in the system of
polynomials {Û∗

k}∞k=0.

Definition 4.1. An kth moment of some tensor field F(x′, x3) with respect to the system of

polynomials {Û∗
k}∞k=0, denoted by

(k)

M(F), is defined to be the integral

(k)

M(F) =

1∫
0

F(x′, x3)Û∗
k (x3)h∗(x3) dx3, k ∈ N0. (4.2)

The following assertion can easily be proved.

Proposition 4.1. Any tensor fields F(x′, x3) and G(x′, x3) and any functions α(x′) and β(x′)
satisfy the relation

(k)

M[α(x′)F + β(x′)G] = α(x′)
(k)

M(F) + β(x′)
(k)

M(G), k ∈ N0. (4.3)

This implies that the moment operator is a linear operator.

Proposition 4.2. The kth moment of the tensor field F(x′, x3) with respect to {Û∗
k}∞k=0 is

equal to the kth coefficient in the expansion of F(x′, x3) with respect to x3 in this system of
polynomials; i.e.,

(k)

M(F) =

1∫
0

F(x′, x3)Û∗
k (x3)h∗(x3) dx3 =

(k)

F(x′), k ∈ N0. (4.4)

The statement (4.3) follows from definition (4.2), and the statement (4.4) can be proved us-
ing (4.1), (4.2), and the fact that {Û∗

k}∞k=0 is an orthonormal system.
It is easy to prove the following relations:

(k)

M(∂iF) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂I

(k)

F(x′), i = I,
(k)

F
′(x′), i = 3,

(k)

M(∂i∂jF) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂I∂J

(k)

F(x′), i = I, j = J,

∂I

(k)

F
′(x′), i = I, j = 3,

(k)

F
′′(x′), i = j = 3,

(4.5)

(k)

F
′(x′) = 22(k + 1)

∞∑
p=0

(k+2p+1)

F (x′) = 2(k + 1)
∞∑

p=k

[1 − (−1)k+p]
(p)

F(x′)

= 2(k + 1)
{ N∑

p=k

[1 − (−1)k+p]
(p)

F(x′) +
(+)

F
′(x′) − (−1)k

(−)

F
′(x′)

}
,

(k)

F
′′(x′) = (

(k)

F
′)′ = 24(k + 1)

∞∑
p=0

(p + 1)(k + p + 2)
(k+2p+2)

F (x′)

= 2(k + 1)
{ N∑

p=k

(p − k)(k + p + 2)[1 + (−1)k+p]
(p)

F(x′) +
(+)

F
′′(x′) + (−1)k

(−)

F
′′(x′)

}
,

(4.6)

(+)

F
′(x′) =

∞∑
p=N+1

(p)

F(x′),
(−)

F
′(x′) =

∞∑
p=N+1

(−1)p
(p)

F(x′),

(+)

F
′′(x′) =

∞∑
p=N+1

(p − k)(k + p + 2)
(p)

F(x′),
(−)

F
′′(x′) =

∞∑
p=N+1

(−1)p(p − k)(k + p + 2)
(p)

F(x′).

(4.7)
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We note that the first relation in (4.6) can serve as the “prime” operator, and the second relation can

be obtained applying the “prime” operator twice to
(k)

F.

The following relations are generalizations of (4.5):

(k)

M[PN (x3)∂p
i ∂p

j F] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂p
I ∂q

J

(k)

M[PN (x3)F], i = I, j = J,

∂I{
(k)

M[PN (x3)F]}(q), i = I, j = 3,

{
(k)

M[PN (x3)F]}(p+q), i = j = 3,

, (4.8)

where PN (x3) is a polynomial of degree N , one has k, N , p, q ∈ N0, and {
(k)

M[PN (x3)F]}(m), m ∈ N0,
means that the “prime” operator is applied m times.

Definition (4.2) is used to prove the first rows in (4.5) and (4.8). The second and third rows in (4.5)
are proved by using (2.5) and (2.8), respectively, while the second and third rows in (4.8) are proved by
induction.

Using (2.1)–(2.3) and the last relation in (4.8), we can prove the following relations:

(n)

M[(x3)s∂m
3 F] =

2s∑
p=0

2−2s

(
2s
p

)
(n−x+p)

F
(m)(x′), n − s ≥ 0, s, m ∈ N0,

(n)

M[(x3)s∂m
3 F] =

2n+2∑
p=1

2−2(n+1)

(
2n + 2

p

)
(p−1)

F
(m)(x′), s = n + 1, n, m ∈ N0,

(n)

M[(x3)s∂m
3 F] = −

s−n∑
q=2

2−2s

(
2s

q − 2

)
(s−n−q)

F
(m)(x′)+

2s∑
p=s−n

2−2s

(
2s
p

)
(n−s+p)

F
(m)(x′),

s ≥ n + 2, n, m ∈ N0.

(4.9)

Based on (2.1)–(2.4) and (2.13), it is easy to verify the following relations:

(k)

M[22s(x3)sfg] = Û∗
0

∞∑
n=0

2s∑
q=0

k−s+q∑
p=0

(
2s
q

)
(n+p)

f
(n+k−s−p+q)

g , k − s ≥ 0, s ≥ 0,

(k)

M[22(k+1)(x3)k+1fg] = Û∗
0

∞∑
n=0

2(k+1)∑
q=1

q−1∑
p=0

(
2k + 2

q

)
(n+p)

f
(n−p−1+q)

g , k ≥ 0,

(k)

M[22(k+s)(x3)k+sfg]

= Û∗
0

∞∑
n=0

[
−

s∑
q=2

s−q∑
p=0

(
2(k + s)
q − 2

)
(n+p)

f
(n+s−p−q)

g +
2(k+s)∑

q=s

q−s∑
p=0

(
2(k + s)

q

)
(n+p)

f
(n−s−p+q)

g

]
,

s ≥ 2, k ≥ 0.

(4.10)

Here f(x′, x3), g(x′, x3)∈Cm(V ∪ ∂V ), m≥ 1. It is clear that the first relation in (4.10) for s = 0 implies
the expression for the kth moment of the product of two functions.
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Now we represent (4.9) for m = 1 in another form. Using simple transformations, the first relation in
(4.6), and the first two relations in (4.7), from (4.9) for m = 1 we obtain

(k)

M[(x3)s+1∂3F] =
(k)

M
′[(x3)s+1

F] =
2s+2∑
p=0

N∑
q=l−1

2−(2s+1)

(
2s + 2

p

)
l[1 + (−1)l+q]

(q)

F(x′) + (2k − s + 1)
(+)

F
′,

l ≡ k − s + p, k ≥ s + 1, N ≥ k + s + 1, s ≥ 0,

(k)

M[(x3)k+1∂3F] =
(k)

M
′[(x3)k+1

F] =
2k+2∑
p=1

N∑
q=p−1

2−(2k+1)

(
2k + 2

p

)
p[1 + (−1)p+q]

(q)

F(x′) + (k + 1)
(+)

F
′,

N ≥ 2k + 1, k ≥ 0,
(k)

M[(x3)s+1∂3F] =
(k)

M
′[(x3)s+1

F] = −
s−k−1∑

p=0

N∑
q=p

2−(2s+1)

(
2s + 2

s − k − 1 − p

)
(p + 1)[1 − (−1)p+q]

(q)

F

+
s+k+1∑

p=s+1−k

N∑
q=p

2−(2s+1)

(
2k + 2

s + 1 − k + p

)
(p + 1)[1 − (−1)p+q]

(q)

F + a(s,k)

(−)

F
′ + b(s,k)

(+)

F
′,

s ≥ k + 1, N ≥ s + k + 1, k ≥ 0.

(4.11)

Let us find the expression for
(k)

M
(
g
(s)

P
M−NP F

)
. In view of (3.4) and (4.3), we obtain

(k)

M
(
g
(s)

P
M−NP F

)
=

(k)

M
(
g
(s)

P
M−∂P F

) − g3−
P+

(k)

M
(
g
(s)

P
M−∂3F

)
. (4.12)

Further, using (3.24), (4.3), (4.8), and (4.9) for m = 1, we find

(k)

M
(
g
(s)

P
M−∂P F

)
=

s∑
m=0

A
(m)

P−
M+∂P

(k)

M[(x3)mF] =
k+1∑
m=0

2m∑
p=0

A
(m)

P−
M+2−2m

(
2m
p

)
∂P

(k−m+p)

F

+
s∑

m=k+2

A
(m)

P−
M+

[
−

m−k∑
p=2

2−2m

(
2m

q − 2

)
∂P

(m−k−q)

F +
2m∑

p=m−k

2−2m

(
2m
p

)
∂P

(k−m+p)

F

]
, k ≥ 0, s ≥ 0. (4.13)

Hence for s = 0 and s = 1 we respectively obtain

(k)

M
(
g
(0)

P
M−∂P F

)
=

(k)

M(∂MF), k ≥ 0,

(k)

M
(
g
(1)

P
M−∂P F

)
=

(k)

M
[
(gP−

M− + x3AP−
M+)∂P F

]
= ∂P

(+)

F +
1
4

AP−
M+∂M

((k−1)

F + 2
(k)

F +
(k+1)

F
)
, k ≥ 0.

(4.14)

Here we introduce the notation AP−
M+ ≡ A

(1)

P−
M+ = gP−

M− − gP−
M+ . Moreover, we assume that

(m)

F = 0 if m < 0.

In what follows, we also assume that this condition is satisfied.
In a similar way, according to (3.24), (4.3), (4.8), and (4.11), we have

(k)

M
(
x3g

(s)

P
M−∂3F

)
=

s∑
m=0

A
(m)

P−
M+

(k)

M
′[(x3)m+1

F]

=
k∑

m=0

A
(m)

P−
M+

2m+2∑
p=0

N∑
q=l−1

2−(2m+1)

(
2m + 2

p

)
l[1 + (−1)l+q]

(q)

F(x′)
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+
s∑

m=0

A
(m)

P−
M+

{
−

m−k−1∑
p=0

N∑
q=p

2−(2m+1)

(
2m + 2

m − k − 1 − p

)
(p + 1)[1 − (−1)p+q]

(q)

F(x′)

+
m+k+1∑

p=m+1−k

N∑
q=p

2−(2m+1)

(
2m + 2

m + 1 − k + p

)
(p + 1)[1 − (−1)p+q]

(q)

F(x′)
} (4.15)

+
( s∑

m=k+1

A
(m)

P−
M+a(s,k)

)
(−)

F
′ +

[ k∑
m=0

(2k − m + 1)A
(m)

P−
M+ +

s∑
m=k+1

A
(m)

P−
M+b(s,k)

]
(+)

F
′,

l ≡ k − m + p, N ≥ s + k + 1, k ≥ 0, s ≥ 0.

Hence for s = 0 and s = 1 we respectively obtain

(k)

M
(
x3g

(0)

P
M−∂3F

)
= gP−

M−
(k)

M
′(x3

F) =
1
4

gP−
M−

((k−1)

F + 2
(k)

F +
(k+1)

F
)

= gP−
M−

[
k

(k)

F + 2(k + 1)
( N∑

p=k

(p)

F −
(k)

F +
(+)

F
′
)]

, k ≥ 0,

(k)

M
(
x3g

(1)

P
M−∂3F

)
=

(k)

M
{[

gP−
M−x3 + AP−

M+(x3)2
]
3
F
}

= gP−
M−

(k)

M
′(x3

F) + AP−
M+

(k)

M
′[(x3)2F]

= gP−
M−

[
k

(k)

F + 2(k + 1)
( N∑

p=k

(p)

F −
(k)

F +
(+)

F
′
)]

+
1
4

AP−
M+

[
(k − 1)

(k−1)

F − 4(k + 2)
(k)

F − (k + 3)
(k+1)

F + 8(k + 1)
( N∑

p=k

(p)

F +
(+)

F
′
)]

, k ≥ 0.

(4.16)

Taking into account (4.13) and (4.15), from (4.12) we obtain the desired relation in the form

(k)

M
(
g
(s)

P
M−NP F

)
=

k+1∑
m=0

2m∑
p=0

A
(m)

P−
M+2−2m

(
2m
p

)
∂P

(k−m+p)

F

+
s∑

m=k+2

A
(m)

P−
M+

(
−

m−k∑
p=2

2−2m

(
2m

p − 2

)
∂P

(m−k−p)

F +
2m∑

p=m−k

2−2m

(
2m
p

)
∂P

(k−m+p)

F

)

− g3−
P+

{ k∑
m=0

A
(m)

P−
M+

2m+2∑
p=0

N∑
q=l−1

2−(2m+1)

(
2m + 2

p

)
l[1 + (−1)l+q]

(q)

F(x′)

+
s∑

m=k+1

A
(m)

P−
M+

[
−
m−k−1∑

p=0

N∑
q=p

2−(2m+1)

(
2m + 2

m − k − 1 − p

)
(p + 1)[1 − (−1)p+q]

(q)

F(x′)

+
m+k+1∑

p=m+1−k

N∑
q=p

2−(2m+1)

(
2m + 2

m + 1 − k + p

)
(p + 1)[1 − (−1)p+q]

(q)

F(x′)
]}

,

− g3−
P+

{( s∑
m=k+1

A
(m)

P−
M+a(m,k)

)
(−)

F
′ +

[ k∑
m=0

(2k − m + 1)A
(m)

P−
M+ +

s∑
m=k+1

A
(m)

P−
M+b(m,k)

]
(+)

F
′
}

,

l ≡ k − m + p, N ≥ s + k + 1, k ≥ 0, s ≥ 0.

(4.17)
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Hence for s = 0 and s = 1 or in view of (4.14) and (4.16) we obtain

(k)

M
(
g
(0)

J
I−NJF

)
=

(k)

M(NIF) = ∇I

(k)

F − g3−
I+

[
k

(k)

F + 2(k + 1)
( N∑

p=k

(p)

F −
(k)

F +
(+)

F
′
)]

, k ≥ 0,

(k)

M
(
g
(1)

J
I−NJF

)
=

(k)

M
[(

gJ−
I− + x3AJ−

I+
)
NP F

]
= ∇I

(k)

F +
1
4

AJ−
I+ ∇J

((k−1)

F + 2
(k)

F +
(k−2)

F
)

− g3−
J+

{
gJ−
I−

[
k

(k)

F + 2(k + 1)
( N∑

p=k

(p)

F −
(k)

F +
(+)

F
′
)]

+
1
4

AJ−
I+

[
(k − 1)

(k−1)

F − 4(k + 2)
(k)

F − (k + 3)
(k+1)

F + 8(k + 1)
( N∑

p=k

(p)

F +
(+)

F
′
)]}

, k ≥ 0.

(4.18)

5. SYSTEMS OF EQUATIONS OF MOTION, EQUATIONS OF HEAT INFLUX,
AND CONSTITUTIVE EQUATIONS IN MOMENTS OF THE MOMENT MTDS

The above approximate equations (3.23) and (3.27) and the CE (3.31) and (3.34) contain terms
with the factor g

(n)

J
I−NJF. Moreover, each of relations (3.31) contains two similar terms, while the other

relations contain only one such term. Therefore, on the basis of (4.17), these relations permit obtaining
systems of the corresponding equations and the CE in moments of an arbitrary approximation. They
are as cumbersome as (4.17). Hence we do not write them out in general form but obtain systems of
equations and the CE in terms of moments of the zeroth and first approximations.

We note that it is rather difficult to derive similar general relations using the system of Legendre
polynomials.

5.1. Systems of equations of motion and heat influx in moments
of the zeroth and first approximations of the moment MTDS

The equations of motion of the zeroth approximation of the moment MTDS are obtained from (3.23)
for r = 0 and have the form

NIPI−+ ∂3P3−+ ρF = ρ∂2
t u, NIµ

I−+ ∂3µ
3−+ C

˜
C
¯
C ·· P

˜
PT + ρm = J

˜
J · ∂2

t ϕ. (5.1)

In what follows, we consider only materials homogeneous in x3 unless otherwise specified.
Applying the kth moment operator to Eqs. (5.1), in view of (4.3) and the first relations in (4.5), (4.6),

and (4.18), we obtain the following system of equations of motion in moments of the zeroth approxima-
tion of the moment MTDS:

(k)

M(NIPI−) +
(k)

M(∂3P3−) + ρ
(k)

F = ρ∂2
t

(k)

u,
(k)

M(NIµ
I−) +

(k)

M(∂3µ
3−) + C

˜
C
¯
C ··

(k)

P
˜
PT + ρ

(k)

m = J
˜
J · ∂2

t

(k)

ϕ, k ∈ N0,

(5.2)

where the sums of the first two terms on the left-hand side in(5.2) have the form

(k)

M(NIPI−) +
(k)

M(∂3P3−) = ∇I

(k)

PI− − g3−
I+

[
k

(k)

PI− + 2(k + 1)
( N∑

p=k

(p)

PI− −
(k)

PI−
)]

+2(k + 1)
N∑

p=k

[1 − (−1)k+p]
(k)

P3−+ 2(k + 1)
[(

r3−− g3−
I+rI−) · (+)

P
˜
P′ − (−1)kr3−·

(−)

P
˜
P′

]
; P → µ.(5.3)

Here the notation P → µ means that this relation should be supplemented with the formula obtained
from this relation by replacing the letter P by µ. This notation will be used in the following.
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In (5.3), by analogy with the first two relations in (4.7), we introduce the notation

(+)

P
˜
P′ = rm−

(+)

P
˜
P′ m−

=
∞∑

p=N+1

(p)

P
˜
P,

(−)

P
˜
P′ = rm−

(−)

P
˜
P′ m−

=
∞∑

p=N+1

(−1)p
(p)

P
˜
P; P → µ. (5.4)

The equations of motion of the first approximation of the moment MTDS are found from (3.23)
for r = 1. They have the form

g
(1)

I
J−NIPJ−+ ∂3P3−+ ρF = ρ∂2

t u, g
(1)

I
J−NIµ

J−+ ∂3µ
3−+ C

˜
C
¯
C ·· P

˜
PT + ρm = J

˜
J · ∂2

t ϕ. (5.5)

Applying the kth moment operator to Eqs. (5.5) and using (4.3), the first relations in (4.5) and (4.6)
and the second relation in (4.18), we obtain the following system of equations of motion in moments of
the first approximation of the moment MTDS:

(k)

M
(
g
(1)

I
J−NIPJ−)

+
(k)

M(∂3P3−) + ρ
(k)

F = ρ∂2
t

(k)

u,

(k)

M
(
g
(1)

I
J−NIµ

J−)
+

(k)

M(∂3µ
3−) + C

˜
C
¯
C ··

(k)

P
˜
PT + ρ

(k)

m = J
˜
J · ∂2

t

(k)

ϕ, k ∈ N0,

((n)

P
˜
P = 0

((n)

P
˜
Pm−

= 0
)
,

(n)

µ
˜
µ = 0

((n)

µ
˜
µm−

= 0
)

for n ≤ 0
)
,

(5.6)

where the expression for the sum of the first two terms on the left-hand side in the first relation in (5.6)
has the form

(k)

M
(
g
(1)

I
J−NIPJ−)

+
(k)

M(∂3P3−) = ∇I

(k)

PI− +
1
4

AJ−
I+ ∇J

((k−1)

P I−+ 2
(k)

PI−+
(k+1)

P I−)

−g3−
J+

{
gJ−
I−

[
k

(k)

PI−+ 2(k + 1)
( N∑

p=k

(p)

PI−−
(k)

PI−
)]

+
1
4

AJ−
I+

[
(k − 1)

(k−1)

P I−− 4(k + 2)
(k)

PI−

−(k + 3)
(k+1)

P I−+ 8(k + 1)
N∑

p=k

(p)

PI−
]}

+ 2(k + 1)
N∑

p=k

[1 − (−1)k+p]
(p)

P3−

+2(k + 1)
{[

r3−− g3−
I+

(
gI−
J+ + AI−

J+

)
rJ−] · (+)

P
˜
P′ − (−1)kr3−·

(−)

P
˜
P′

}
; P → µ. (5.7)

By analogy with (5.1) and (5.5), from (3.27) for r = 0 and r = 1 we obtain the equations of heat influx
in the zeroth and first approximations of the moment MTDS. These equations have the form

−NIq
I−− ∂3q

3−+ ρq − T0
d

dt
(a
˜
a ·· P

˜
PT + d

˜
d ·· µT ) + W ∗ = ρcp∂tT,

−g
(1)

P
M−NP qM−− ∂3q

3−+ ρq − T0
d

dt
(a
˜
a ··P

˜
PT + d

˜
d ·· µT ) + W ∗ = ρcp∂tT.

Applying the kth moment operator to these equations and using (4.3) and the first relations in (4.5)
and (4.6) and (4.8), by analogy with (5.2) and (5.6), we obtain systems of equations of heat influx in
moments of the zeroth and first approximations of the moment MTDS:

−
[ (k)

M(NIq
I−) +

(k)

M(∂3q
3−)

]
+ ρ

(k)
q − T0

d

dt
(a
˜
a ··

(k)

P
˜
PT + d

˜
d ·· (k)

µ
˜
µT ) +

(k)

W ∗ = ρcp∂t

(k)

T , k ∈ N0, (5.8)

−
[ (k)

M
(
g
(1)

I
J−NIq

J−) +
(k)

M
(
∂3q

3−)] + ρ
(k)
q − T0

d

dt
(a
˜
a ··

(k)

P
˜
PT + d

˜
d ·· (k)

µ
˜
µT ) +

(k)

W ∗ = ρcp∂t

(k)

T , k ∈ N0, (5.9)

((k)

q = 0 (
(k)
qm−

= 0) for n ≤ 0
)
.

We note that, the sums of two terms in square brackets on the left-hand sides of Eqs. (5.8) and (5.9)
are obtained from (5.3) and (5.7), respectively, if the letter P in them is replaced by the letter q. Here, by
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analogy with (5.4) we have introduced the notation

(+)

q ′ =
(+)
q ′ m−

rm− =
∞∑

p=N+1

(p)
q ,

(−)

q ′ =
(−)
q ′ m−

rm− =
∞∑

p=N+1

(−1)p
(p)
q .

The systems of equations of motion (5.2) and (5.6) and of heat influx (5.8) and (5.9) in moments
of the zeroth and first approximations of the moment MTDS are infinite systems of equations. In this
case, each equation in these systems contains infinitely many terms (a similar picture also takes place
for the system of equations in moments of arbitrary approximation). Therefore, they should be reduced to
finite systems where each equation contains finitely many terms. This reduction is performed as follows:
we fix a nonnegative integer N and, instead of a given infinite system, consider the system consisting
only of the first N + 1 equations. Each of these equations contains moments of the desired variables
whose maximum order does not exceed N . In other words, in each equation of the system in question,
we neglect the moments of the desired variables whose order is greater than N . In this connection, we
introduce the following definition.

Definition 5.1. The system of equations in moments which consists of the first N + 1 equations of
the corresponding infinite system of equations of motion (heat influx) of the kth approximation and such
that each of its equations does not contain any moments of the desired variables whose order is greater
than N is called the system of equations of motion (heat influx) in moments of the (r,N)th approximation
of the moment MTDS.

By this definition, for example, the systems of equations of motion and heat influx in moments of
the (0, N)th approximation of the moment MTDS derived from (5.2) and (5.8) have the form

∇I

(k)

P
˜
PI−− g3−

I+

[
k

(k)

P
˜
PI−+ 2(k + 1)

( N∑
p=k

(p)

P
˜
PI−−

(k)

P
˜
PI−

)]
+ 2(k + 1)

N∑
p=k

[1 − (−1)k+p]
(p)

P
˜
P3−+ ρ

(k)

F = ρ∂2
t

(k)

u,

∇I
(k)

µ
˜
µI−− g3−

I+

[
k

(k)

µ
˜
µI−+ 2(k + 1)

( N∑
p=k

(p)

µ
˜
µI−− (k)

µ
˜
µI−

)]
+ 2(k + 1)

N∑
p=k

[1 − (−1)k+p]
(p)

µ
˜
µ3−

+ C
˜
C
¯
C ··

(k)

P
˜
PT + ρ

(k)

m = J
˜
J · ∂2

t

(k)

ϕ (k = 0, N),

(5.10)

−∇I
(k)
q I−+ g3−

I+

[
k

(k)
q I−+ 2(k + 1)

( N∑
p=k

(p)
q I−− (k)

q I−
)]

− 2(k + 1)
N∑

p=k

[1 − (−1)k+p]
(p)
q 3−

+ρ
(k)
q − T0

d

dt
(a
˜
a ··

(k)

P
˜
PT + d

˜
d ·· (k)

µ
˜
µT ) +

(k)

W ∗ = ρcp∂t

(k)

T (k = 0, N), (5.11)

where the notation k = 0, N means that k ranges from 0 to N .
In (4.17), we neglect the moments whose order is greater than N , replace the index s by r, and obtain

the following relation in the (r,N)th approximation:

(k)

M
(
g
(r)

P
M−NP F

)
=

k+1∑
m=0

2m∑
p=0

A
(m)

P−
M+2−2m

(
2m
p

)
∂P

(k−m+p)

F

+
r∑

m=k+2

A
(m)

P−
M+

(
−

m−k∑
p=2

2−2m

(
2m

p − 2

)
∂P

(m−k−p)

F +
2m∑

p=m−k

2−2m

(
2m
p

)
∂P

(k−m+p)

F

)

−g3−
P+

{ k∑
m=0

A
(m)

P−
M+

2m+2∑
p=0

N∑
q=l−1

2−(2m+1)

(
2m + 2

p

)
l[1 + (−1)l+q]

(q)

F(x′)

+
r∑

m=k+1

A
(m)

P−
M+

[
−

m−k−1∑
p=0

N∑
q=p

2−(2m+1)

(
2m + 2

m − k − 1 − p

)
(p + 1)[1 − (−1)p+q]

(q)

F(x′)
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+
m+k+1∑

p=m+1−k

N∑
q=p

2−(2m+1)

(
2m + 2

m + 1 − k + p

)
(p + 1)[1 − (−1)p+q]

(q)

F(x′)
]}

,

l ≡ k − m + p, N ≥ r + k + 1, k ≥ 0, r ≥ 0,

which easily permits us to write out the systems of equations of motion and heat influx in moments of
the (r,N)th approximation. Since these systems of equations are very cumbersome (in what follows, we
assume that they are known), we do not present them here.

5.2. Systems of Hooke’s laws and Fourier’s thermal conduction laws in moments
of the zeroth and first approximations of the moment MTDS

By (4.3), the first relations in (4.5), (4.6), and (4.18), from (3.32) we obtain the following system of
Hooke’s laws in moments of the zeroth approximation:

(k)

P
˜
P(0) =

(k)

P
˜
P(0,N) + C

˜
C
¯
C3−

(0,k) ·
(+)

u ′ + C
˜
C
¯
C3−

(k) ·
(−)

u ′ + A
˜
A
¯
A3−

(0,k) ·
(+)

ϕ′ + A
˜
A
¯
A3−

(k) ·
(−)

ϕ′,
(k)

µ
˜
µ(0) =

(k)

µ
˜
µ(0,N) + D

˜
D
¯
D3−

(0,k) ·
(+)

ϕ′ + D
˜
D
¯
D3−

(k) ·
(−)

ϕ′ + B
˜
B
¯
B3−

(0,k) ·
(+)

u ′ + B
˜
B
¯
B3−

(k) ·
(−)

u ′, k ∈ N0,
(5.12)

(k)

P
˜
P(0,N) = C

˜
C
¯
CM−·

{
∇M

(k)

u(x′) − g3−
M+

[
k

(k)

u(x′) + 2(k + 1)
( N∑

p=k

(p)

u(x′) − (k)

u(x′)
)]}

+ 2(k + 1)C
˜
C
¯
C3−·

N∑
p=k

[1 − (−1)k+p]
(p)

u(x′)

+ A
˜
A
¯
AM−·

{
∇M

(k)

ϕ(x′) − g3−
M+

[
k

(k)

ϕ(x′)2(k + 1)
( N∑

p=k

(p)

ϕ(x′) − (k)

ϕ(x′)
)]}

+ 2(k + 1)A
˜
A
¯
A3−·

N∑
p=k

[1 − (−1)k+p]
(p)

ϕ(x′) − C
˜
C
˜
C ··C

˜
C
¯
C · (k)

ϕ(x′) − b
˜
b

(k)

ϑ,

(k)

µ
˜
µ(0,N) = D

˜
D
¯
DM−·

{
∇M

(k)

ϕ(x′) − g3−
M+

[
k

(k)

ϕ(x′) + 2(k + 1)
( N∑

p=k

(p)

ϕ(x′) − (k)

ϕ(x′)
)]}

+ 2(k + 1)D
˜
D
¯
D3−·

N∑
p=k

[1 − (−1)k+p]
(p)

ϕ(x′)

+ B
˜
B
¯
BM−·

{
∇M

(k)

u(x′) − g3−
M+

[
k

(k)

u(x′) + 2(k + 1)
( N∑

p=k

(p)

u(x′) − (k)

u(x′)
)]}

+ 2(k + 1)B
˜
B
¯
B3−·

N∑
p=k

[1 − (−1)k+p]
(p)

u(x′) − B
˜
B
˜
B ··C

˜
C
¯
C · (k)

ϕ(x′) − β
˜
β

(k)

ϑ(x′), k ∈ N0.

(5.13)

Here we have introduced the notation

C
˜
C
¯
C3−

(0,k) = 2(k + 1)C
˜
C
˜
C · (r3−− g3−

M+rM
)
, C

˜
C
¯
C3−

(k) = 2(k + 1)(−1)k+1C
˜
C
˜
C · r3−, k ∈ N0. (5.14)

Similar relations for A
˜
A
¯
A3−

(0,k), A˜
A
¯
A3−

(k), D˜
D
¯
D3−

(0,k), D˜
D
¯
D3−

(k), and B
˜
B
¯
B3−

(0,k), B˜
B
¯
B3−

(k) can be obtained from (5.14) if the letter C
is replaced by A, D, and B, respectively.

Moreover, by analogy with the first two relations in (4.7), we have

(+)

u ′(x′) =
∞∑

p=N+1

(p)

u(x′),
(−)

u ′(x′) =
∞∑

p=N+1

(−1)p
(p)

u(x′), u → ϕ.
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Further, by applying the kth moment operator to the CE obtained from (3.31) for s = 1 and by taking
into account (4.3), the first relations in (4.5) and (4.6), and the second relation in (4.18), we obtain the
following system of Hooke’s laws in moments of the first approximation:

(k)

P
˜
P(1) =

(k)

P
˜
P(1,N) + C

˜
C
¯
C3−

(1,k) ·
(+)

u ′ + C
˜
C
¯
C3−

(k) ·
(−)

u ′ + A
˜
A
¯
A3−

(1,k) ·
(+)

ϕ′ + A
˜
A
¯
A3−

(k) ·
(−)

ϕ′,
(k)

µ
˜
µ(1) =

(k)

µ
˜
µ(1,N) + D

˜
D
¯
D3−

(1,k) ·
(+)

ϕ′ + D
˜
D
¯
D3−

(k) ·
(−)

ϕ′ + B
˜
B
¯
B3−

(1,k) ·
(+)

u ′ + B
˜
B
¯
B3−

(k) ·
(−)

u ′, k ∈ N0,
(5.15)

(k)

P
˜
P(1,N) =

(k)

P
˜
P(0,N) +

1
4

AP−
M+C

˜
C
¯
CM−·

{
∇P (

(k−1)

u + 2
(k)

u +
(k+1)

u ) − g3−
P+

[
(k − 1)

(k−1)

u − 4(k + 2)
(k)

u

− (k + 3)
(k+1)

u + 8(k + 1)
N∑

p=k

(p)

u
]}

+
1
4

AP−
M+A

˜
A
¯
AM−·

{
∇P (

(k−1)

ϕ + 2
(k)

ϕ +
(k+1)

ϕ )

− g3−
P+

[
(k − 1)

(k−1)

ϕ − 4(k + 2)
(k)

ϕ − (k + 3)
(k+1)

ϕ + 8(k + 1)
N∑

p=k

(p)

ϕ

]}
;

P → µ, C → D, A → B, u � ϕ, k ∈ N0.

(5.16)

Here the notation P → µ, C → D, A → B, u � ϕ means that the next relation (5.16) is obtained from
that already written out if the letters C and A are replaced by D and B, respectively, u is replaced by ϕ,
and conversely, ϕ is replaced by u. In what follows, this notation is also used.

We note that C
˜
C
¯
C3−

(1,N) = 2(k + 1)C
˜
C
˜
C · [r3−− g3−

P+

(
gP−
M− + AP−

M+

)
rM−]

, k ∈ N0, and similar relations

for A
˜
A
¯
A3−

(1,N), B
˜
B
¯
B3−

(1,N), and D
˜
D
¯
D3−

(1,N) can be obtained from this formula by replacing the letter C by A, B,

and D, respectively.

Now we can easily obtain the systems of Fourier thermal conduction laws in moments. Indeed, by
analogy with (5.10), from (3.35) we obtain the system of Fourier thermal conduction laws in moments
of the zeroth approximation:

(k)

q(0) =
(k)

q(0,N) + Λ3−
(0,k)

(+)

T ′ + Λ3−
(k)

(−)

T ′, (5.17)

(k)

q(0,N) = −ΛM−
{

∂M

(k)

T − g3−
M+

[
k

(k)

T + 2(k + 1)
( N∑

p=k

(p)

T −
(k)

T

)]}
− 2(k + 1)Λ3−

N∑
p=k

[1 − (−1)k+p]
(p)

T ,

Λ3−
(0,k) = −2(k + 1)Λ

˜
Λ · (r3−− g3−

M+rM−)
, Λ3−

(k) = 2(k + 1)(−1)kΛ
˜
Λ · r3− ,

(+)

T ′(x′) =
∞∑

p=N+1

(p)

T (x′),
(−)

T ′(x′) =
∞∑

p=N+1

(−1)p
(p)

T (x′).

(5.18)

Further, from Fourier’s thermal conduction law in the first approximation, which follows from (3.34)
for s = 1, by analogy with (5.15), we obtain the following system of Fourier thermal conduction laws in
moments of the first approximation:

(k)

q(1) =
(k)

q(1,N) + Λ3−
(1,k) ·

(+)

T ′ + Λ3−
(k) ·

(−)

T ′, (5.19)
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(k)

q(1,N) = −ΛM−
{

∂M

(k)

T +
1
4

AP−
M+∂P

((k−1)

T + 2
(k)

T +
(k+1)

T
) − g3−

P+

[
gP−
M−

(
k

(k)

T + 2(k + 1)
( N∑

p=k

(p)

T −
(k)

T

))

+
1
4

AP−
M+

(
(k − 1)

(k−1)

T − 4(k + 2)
(k)

T − (k + 3)
(k+1)

T + 8(k + 1)
N∑

p=k

(p)

T

)]}

− 2(k + 1)Λ3−
N∑

p=k

[1 − (−1)k+p]
(p)

T ,

Λ3−
(1,k) = −2(k + 1)Λ

˜
Λ · [r3−− g3−

P+

(
gP−
M− + AP−

M+

)
rM−]

, k ∈ N0.

(5.20)

6. ON BOUNDARY AND INITIAL CONDITIONS IN THE MOMENT MTDS
We write out the boundary conditions of kinematic, physical, and heat content on the face surfaces

and the lateral side for the new parametrization of the domain occupied by a thin solid. From the
boundary conditions on the lateral side, we obtain the corresponding boundary conditions in moments.

Moreover, we obtain the equations for determining the vector functions
(+)

u ′,
(−)

u ′,
(+)

ϕ′,
(−)

ϕ′, and the

functions
(+)

T ′,
(−)

T ′ by using the given values on the face surfaces.

6.1. Boundary conditions on the face surfaces.

Definition of the vector functions
(+)

u ′,
(−)

u ′,
(+)

ϕ′,
(−)

ϕ′, and the functions
(+)

T ′,
(−)

T ′

First, we consider the boundary conditions of physical content on the face surfaces and represent
them for the new parametrization of the domain occupied by the thin solid.

Suppose that
(+)

P and
(−)

P are given stress vectors and
(+)

µ and
(−)

µ are given couple stress vectors on the

face surfaces
(+)

S and
(−)

S , respectively. Let
(+)

n and
(−)

n be the outward unit normals on
(+)

S and
(−)

S , respectively.

It is easy to see that
(−)

n and
(+)

n have the following form for the new parametrization:

(−)

n = − r3−√
g3−3−

,
(+)

n =
r3+√
g3+3+

=
1√

g3+3+

(
r3−− g3−

P+gP+

M−rM−)
, (6.1)

gP+

M− = gP
M−

∣∣∣
x3=1

=
(∓)

ϑ−1AP+

M− ,
(∓)

ϑ =
√

(+)
g

(−)
g −1 =

(±)

ϑ−1 = det
(
gJ−
I+

)
,

AP+

M− = AP
M−

∣∣∣
x3=1

= εPLεMNgN−
L+ , g3+

M− = g3
M−

∣∣∣
x3=1

= −
(∓)

ϑ−1g3−
P+AP+

M− ,

g3+3+ = g33
∣∣∣
x3=1

= g3+

m−g3+

n−gm−n− = g3−3− + g3+

M−g3+

N−gM−N−
.

Then, using (6.1), we can represent the boundary conditions of physical content on the face surfaces
of the thin solid in the form

r3−·
(−)

P
˜
P = −

√
g3−3−

(−)

P,
(
r3− − g3−

P+gP+

M−rM−) · (+)

P
˜
P =

√
g3+3+

(+)

P,

(−)

P
˜
P = P

˜
P

∣∣∣
x3=0

,
(+)

P
˜
P = P

˜
P

∣∣∣
x3=1

; P
˜
P → µ, x′ ∈

(−)

S .

(6.2)

For nonisothermal processes on the face surfaces
(+)

S and
(−)

S , the respective normal components
(+)
q

and
(−)
q of the heat flux vector q can be given. Then, by analogy with (6.2), the boundary conditions

(conditions of the second kind or Neumann type conditions) [25] on the face surfaces have the form

r3−· (−)

q = −
√

g3−3− (−)
q ,

(
r3−− g3−

P+gP+

M−rM−) · (+)

q =
√

g3+3+
(+)
q , x′ ∈

(−)

S ,

(−)

q = q
∣∣∣
x3=0

,
(+)

q = q
∣∣∣
x3=1

.
(6.3)
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The boundary conditions corresponding to heat exchange with the environment according to the
Newton law (boundary conditions of third kind) [25] can also be given. In this case, the boundary

conditions on
(+)

S and
(−)

S , respectively, have the form

r3−· (−)

q = −
√

g3−3−
(−)

β
((−)

T c −
(−)

T
)
,

(
r3−− g3−

P+gP+

M−rM−) · (+)

q =
√

g3+3+
(+)

β
((+)

T c −
(+)

T
)
, x′ ∈

(−)

S , (6.4)

where Tc is the given temperature of the environment, β is the convective heat transfer coefficient
(cal/cm2·s·grad), and

(−)

β = β
∣∣∣
x3=0

,
(+)

β = β
∣∣∣
x3=1

,
(−)

T = T
∣∣∣
x3=0

,
(+)

T = T
∣∣∣
x3=1

,
(−)

T c = Tc

∣∣∣
x3=0

,
(+)

T c = Tc

∣∣∣
x3=1

. (6.5)

In what follows, we consider the boundary conditions of first kind and the Dirichlet type conditions.

Now we obtain equations for the vector functions
(+)

u ′,
(−)

u ′ and
(+)

ϕ′,
(−)

ϕ′ as well as the functions
(+)

T and
(−)

T .
In this connection, we note that we seek an approximate solution of an approximate problem, which
contains the system of equations in moments of the (r,N)th approximation with boundary conditions
on the lateral face (the statements of the problems and the initial conditions will be considered later).
Moreover, it follows from (5.12), (5.15) and (5.17), (5.19) that the forms of representation of systems
of Hooke’s laws and Fourier’s thermal conduction laws are the same. (They remain to be the same for
approximations of an arbitrary order.) The difference is only in notation. In this case, the methods for
determining the desired functions are the same and are similar to the methods for determining similar
functions studied in [23]. Therefore, in what follows we consider a method for deriving the system
of equations for these functions in the case of systems of Hooke’s laws (5.12) and Fourier’s thermal
conduction laws (5.17) in moments of the zeroth approximation.

We assume that the stress and couple stress tensors have the following representations:

P
˜
P(0)(x

′, x3) =
N∑

k=0

(k)

P
˜
P(0)(x

′)Û∗
k (x3), µ

˜
µ(0)(x

′, x3) =
N∑

k=0

(k)

µ
˜
µ(0)(x

′)Û∗
k (x3). (6.6)

Then, owing to (6.6), the boundary conditions of physical content on the face surfaces (6.2) can be
written in the form

r3−·
(−)

P
˜
P(0) = −

√
g3−3−

(−)

P,
(
r3−− g3−

P+gP+

M−rM−) · (+)

P
˜
P(0) =

√
g3+3+

(+)

P, P → µ, x′ ∈
(−)

S . (6.7)

Taking into account the values of the orthonormal shifted Chebyshev polynomials of the second kind at
the endpoints of the interval [0, 1],

Û∗
k (0) = (−1)k

2√
π

(k + 1), Û∗
k (1) =

2√
π

(k + 1), (6.8)

from (6.6) we obtain

(−)

P
˜
P(0) = P

˜
P(0)

∣∣∣
x3=0

=
2√
π

N∑
k=0

(−1)k(k + 1)
(k)

P
˜
P(0),

(+)

P
˜
P(0) = P

˜
P(0)

∣∣∣
x3=1

=
2√
π

N∑
k=0

(k + 1)
(k)

P
˜
P(0), P → µ.

Using (5.12), (5.14), and the last formulas, we find

b(N)C˜
C
˜
C ·· (r3−− g3−

M+rM−)(+)

u ′ − a(N)C˜
C
˜
C ·· r3− (−)

u ′ + b(N)A˜
A
˜
A ·· (r3−− g3−

M+rM−)(+)

ϕ′ − a(N)A˜
A
˜
A ·· r3− (−)

ϕ′

=
√

π

2

(−)

P
˜
P(0) −

N∑
k=0

(−1)k(k + 1)
(k)

P
˜
P(0,N),

a(N)C˜
C
˜
C ·· (r3−− g3−

M+rM−)(+)

ϕ′ − b(N)C˜
C
˜
C ·· r3− (−)

u ′ + a(N)A˜
A
˜
A ·· (r3−− g3−

M+rM−)(+)

ϕ′ − b(N)A˜
A
˜
A ·· r3− (−)

u ′

=
√

π

2

(+)

P
˜
P(0) −

N∑
k=0

(k + 1)
(k)

P
˜
P(0,N),

C → D, A → B, D → µ, u � ϕ,

(6.9)
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a(N) = 2
N∑

k=0

(k + 1)2 =
1
3

(N + 1)(N + 2)(2N + 3), b(N) = 2
N∑

k=0

(−1)k(k + 1)2. (6.10)

By multiplying the first and third (unwritten) relations in (6.9) in the sense of the inner product on
the left by r3− , by multiplying the second and fourth (unwritten) relations by

(
r3−− g3−

P+gP+

K−rK−)
, and by

taking into account (6.7), we obtain the desired equations
(+)

C
˜
C′

(0,N) ·
(+)
u ′ +

(−)

C
˜
C′

(0,N) ·
(−)
u ′ +

(+)

A
˜
A′

(0,N) ·
(+)
ϕ′ +

(−)

A
˜
A′

(0,N) ·
(−)
ϕ′ =

(−)

A(0,N),

(+)

C
˜
C′′

(0,N) ·
(+)

u ′ +
(−)

C
˜
C′′

(0,N) ·
(−)

u ′ +
(+)

A
˜
A′′

(0,N) ·
(+)

ϕ′ +
(−)

A
˜
A′′

(0,N) ·
(−)

ϕ′ =
(+)

A(0,N),

(+)

B
˜
B′

(0,N) ·
(+)

u ′ +
(−)

B
˜
B′

(0,N) ·
(−)

u ′ +
(+)

D
˜
D′

(0,N) ·
(+)

ϕ′ +
(−)

D
˜
D′

(0,N) ·
(−)

ϕ′ =
(−)

B(0,N),

(+)

B
˜
B′′

(0,N) ·
(+)

u ′ +
(−)

B
˜
B′′

(0,N) ·
(−)

u ′ +
(+)

D
˜
D′′

(0,N) ·
(+)

ϕ′ +
(−)

D
˜
D′′

(0,N) ·
(−)

ϕ′ =
(+)

B(0,N),

(6.11)

(+)

C
˜
C′

(0,N) = b(N)

(
C
˜
C3−··3−− g3−

M+C
˜
C3−··M−)

,
(−)

C
˜
C′

(0,N) = −a(N)C˜
C3−··3−,

(+)

C
˜
C′′

(0,N) = a(N)

[(
C
˜
C3−··3−− g3−

M+C
˜
C3−··M−) − g3−

P+gP+

K−
(
C
˜
CK−··3−− g3−

M+C
˜
CK−··M−)]

,

(−)

C
˜
C′′

(0,N) = −b(N)

(
C
˜
C3−··3−− g3−

P+gP+

K−C
˜
CK−··3−), (k)

Pm−·
(0,N) = rm−· (k)P

˜
P(0,N),

(k)

µm−·
(0,N) = rm−·(k)µ

˜
µ(0,N),

(−)

A(0,N) = −
[ √π

2

√
g3−3−

(−)

P +
N∑

k=0

(−1)k(k + 1)
(k)

P3−·
(0,N)

]
, A

˜
Am−··n−= rm−·A

˜
A
˜
A · rn−,

(+)

A(0,N) =
√

π

2

√
g3+3+

(+)

P −
N∑

k=0

(k + 1)
((k)

P3−·
(0,N) − g3−

P+gP+

K−
(k)

PK−·
(0,N)

)
, B

˜
Bm− ··n−= rm−· B

˜
B
˜
B · rn−,

(−)

B(0,N) = −
[ √π

2

√
g3−3− (−)

µ +
N∑

k=0

(−1)k(k + 1)
(k)

µ3−·
(0,N)

]
, C

˜
Cm−··n−= rm−·C

˜
C
˜
C · rn−,

(+)

B(0,N) =
√

π

2

√
g3+3+

(+)

µ −
N∑

k=0

(k + 1)
((k)

µ3−·
(0,N) − g3−

P+gP+

K−
(k)

µK−·
(0,N)

)
, D

˜
Dm− ··n−= rm−· D

˜
D
˜
D · rn−,

The expressions for
(+)

A
˜
A′

(0,N),
(−)

A
˜
A′

(0,N),
(+)

A
˜
A′′

(0,N),
(−)

A
˜
A′′

(0,N) (
(+)

B
˜
B′

(0,N),
(−)

B
˜
B′

(0,N),
(+)

B
˜
B′′

(0,N),
(−)

B
˜
B′′

(0,N)) and
(+)

D
˜
D′

(0,N),
(−)

D
˜
D′

(0,N),
(+)

D
˜
D′′

(0,N),
(−)

D
˜
D′′

(0,N) are obtained from the expressions for
(+)

C
˜
C′

(0,N),
(−)

C
˜
C′

(0,N),
(+)

C
˜
C′′

(0,N), and
(−)

C
˜
C′′

(0,N) by replacing the
letter C by the letters A (B) and D, respectively.

Relations (6.11) form an algebraic system of twelve equations for the twelve unknowns
(+)

u ′,
(−)

u ′,
(+)

ϕ′,
and

(−)

ϕ′ (four vectors). By solving this system, we obtain the vectors
(+)

u ′,
(−)

u ′,
(+)

ϕ′, and
(−)

ϕ′ expressed in terms

of the moments
(m)

u , ∂I
(m)

u ,
(m)

ϕ and ∂I
(m)

ϕ,
(m)

ϑ ; m = 0, N . If we take account of the obtained expressions
for the desired vectors in (5.12), we find the CE (the systems of Hooke’s laws) in moments of the

zeroth approximation. Moreover,
(m)

P
˜
P(0) and

(k)

µ
˜
µ(0) are linear forms in

(m)

u , ∂I
(m)

u ,
(m)

ϕ and ∂I
(m)

ϕ,
(m)

ϑ ; m = 0, N .

Substituting
(k)

P
˜
P(0) and

(k)

µ
˜
µ(0) into (6.6), we obtain approximate expressions for the stress and couple

stress tensors which satisfy the boundary conditions on the face surfaces for any vector fields
(m)

u ,
(m)

ϕ

and scalar fields
(m)

ϑ ; m = 0, N , which are moments of the desired vector fields u, ϕ, and the scalar field ϑ.

Following Vekua, we call the expressions for
(k)

P
˜
P(0) and

(k)

µ
˜
µ(0), consistent with the boundary conditions

on the face surfaces, the normalized kth moments of the stress and couple stress tensors in the zeroth
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approximation. (The normalized kth moments of the stress and couple stress tensor fields can be found
in a similar way for an arbitrary approximation.)

Now we obtain equations for the functions
(+)

T ′ and
(−)

T ′. We assume that the heat influx vector is given
by the approximate formula

q(0)(x
′, x3) =

N∑
r=0

(k)

q(0)(x
′)Û∗

0 (x3). (6.12)

First, consider the boundary conditions of the second kind (the Neumann type conditions) (6.3). By
analogy with (6.7), we represent them in the form

r3−· (−)

q (0) =
√

g3−3− (−)
q ,

(
r3−− g3−

P+gP+

M−rM−) · (+)

q (0) =
√

g3+3+
(+)
q , x′ ∈

(−)

S. (6.13)

By (6.8), from (6.12) we obtain

(−)

q (0) = q
˜
q(0)

∣∣∣
x3=0

=
2√
π

N∑
k=0

(−1)k(k + 1)
(k)

q(0),
(+)

q (0) = q
˜
q(0)

∣∣∣
x3=1

=
2√
π

N∑
k=0

(k + 1)
(k)

q(0). (6.14)

Taking into account (5.17) and the second and third relations in (5.18) and (6.10), from (6.14) we obtain

− b(N)Λ˜
Λ · (r3−− g3−

M+rM−)(+)

T ′ + a(N)Λ˜
Λ · r3−

(−)

T ′ =
√

π

2
(−)

q (0) −
N∑

k=0

(−1)k(k + 1)
(k)

q(0,N),

− a(N)Λ˜
Λ · (r3−− g3−

M+rM−)(+)

T ′ + b(N)Λ˜
Λ · r3−

(−)

T ′ =
√

π

2
(+)

q (0) −
N∑

k=0

(k + 1)
(k)

q(0,N).

(6.15)

By multiplying the first relation in (6.15) in the sense of the inner product by r3− and the second relation
by r3−− g3−

P+gP+

K−rK−
and by using (6.13), we obtain the desired system of equations

(+)

Λ′
(0,N)

(+)

T ′ +
(−)

Λ ′
(0,N)

(−)

T ′ =
(−)

Q(0,N),
(+)

Λ′′
(0,N)

(+)

T ′ +
(−)

Λ′′
(0,N)

(−)

T ′ =
(+)

Q(0,N), (6.16)

where
(+)

Λ′
(0,N) = −b(N)

(
Λ3−3− − g3−

M+Λ3−M−)
,

(−)

Λ ′
(0,N) = a(N)Λ

3−3−,

Λm−n−= rm−·Λ
˜
Λ · rn−,

(k)
qm−

(0,N) =
(k)

q(0,N) · rm−
,

(+)

Λ′′
(0,N) = −a(N)

[(
Λ3−3− − g3−

M+Λ3−M−) − g3−
P+gP+

K−
(
ΛK−3− − g3−

M+ΛK−M−)]
,

(−)

Λ ′′
(0,N) = b(N)

(
Λ3−3− − g3−

P+gP+

K−ΛK−3−),
(−)

Q(0,N) = −
[ √π

2

√
g3−3− (−)

q +
N∑

k=0

(−1)k(k + 1)
(k)
q 3−

(0,N)

]
,

(+)

Q(0,N) =
√

π

2

√
g3+3+

(+)
q −

N∑
k=0

(k + 1)
((k)
q 3−

(0,N) − g3−
P+gP+

K−
(k)
qK−

(0,N)

)
.

Relations (6.16) form a system of equations for the two unknown variables
(+)

T ′ and
(−)

T ′. By solving

this system, we obtain the functions
(+)

T ′ and
(−)

T ′ expressed via the moments
(m)

T , ∂I

(m)

T ; m = 0, N . Sub-

stituting the obtained expressions for
(+)

T ′ and
(−)

T ′ into (5.17), we find relations in moments between
(k)

q(0)

and
(m)

T , ∂I

(m)

T ; m = 0, N . These relations are linear forms in
(m)

T , ∂I

(m)

T ; m = 0, N . Taking into account the
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expressions for
(k)

q(0) in (6.12), we obtain an approximate expression for the heat influx flow satisfying the

boundary conditions of the second kind on the face surfaces for any scalar fields
(m)

T , m = 0, N , which are

moments of the desired scalar field T (x′, x3). Following Vekua, we call the expression for
(k)

q(0) consistent
with the boundary conditions on the face surfaces the normalized kth-order moment of the field of the
heat influx vector in the zeroth approximation. (The normalized kth-order moment of the heat influx
vector in an arbitrary approximation is determined in a similar way.)

Now we consider the boundary conditions of the third kind (conditions of heat exchange with the
environment according to the Newton law). In this case, we need not derive the system of equations

for the functions
(+)

T ′ and
(−)

T ′ in detail. Indeed, by representing the boundary conditions (6.4) in the form
similar to (6.13),

r3−· (k)

q(0) = −
√

g3−3−
(−)

β
((−)

T c −
(−)

T
)
,

(
r3−− g3−

P+gP+

M−rM−) · (k)

q(0) =
√

g3+3+
(+)

β
((+)

T c −
(+)

T
)
, x′ ∈

(−)

S ,

we can easily see that for
(+)

T ′ and
(−)

T ′ we obtain equations similar to (6.16) whose right-hand sides

are obtained from the right-hand sides of (6.16) by replacing
(−)
q and

(+)
q in them by

(−)

β
((−)

T c −
(−)

T
)

and
(+)

β
((+)

T c −
(+)

T
)
, respectively. For brevity, here we do not write out these equations.

We note that, in the simplified scheme of reduction to the system of equations of a finite order,
just as above, for the system of equations (of motion or heat influx) we take the system of equations
(of motion or heat influx) in moments of the (r,N)th approximation, where r and N are some fixed
nonnegative integers, and then, in Hooke’s laws and Fourier’s thermal conduction laws in moments of
the rth approximation, we assume that

(k)

u = 0,
(k)

ϕ = 0,
(k)

ϑ = 0, and
(k)

T = 0 if k ≥ N.

For example, in the cases r = 0 and r = 1, for the system of Hooke’s law one must take relations (5.13)
and (5.16) for k = (0, N), and for the system of Fourier’s thermal conduction laws one must take the
first relations in (5.18) and (5.20) for k = (0, N).

In what follows, we note that, in the simplified scheme of reduction, for each approximate solution
of the boundary value problem, just as it was done in [23] for the classical version of the theory with
the use of the Legendre polynomials, we construct a correction term which ensures that the boundary
conditions are satisfied on the face surfaces. For brevity, in this paper we do not consider the construction
of the correction term for various boundary conditions on the face surfaces.

It follows from the above that the three-dimensional Hooke’s and Fourier’s thermal conduction laws
in the theory of thin solids are replaced by the corresponding infinite systems of laws in moments. In
this case, each law contains infinitely many terms. Therefore, by analogy with systems of equations of
motion and heat influx in moments, we should reduce them to finite systems of laws in moments such
that each of these laws contains finitely many terms. This reduction is performed as follows: we fix some
(in particular, the same numbers as in the reduction of systems of equations) nonnegative integers r
and N and then, from the infinite system of laws in normalized moments of the stress and couple stress
tensors in the rth approximation, we take the set of the first N + 1 laws. In the simplified scheme of
reduction, from the infinite system of laws in moments of the rth approximation, we the take the set of
the first N + 1 laws and, in each of these laws, we neglect the moments of the desired variables whose
order exceeds N . In this connection, it is expedient to introduce the following definitions.

Definition 6.1. The set of Hooke’s laws (Fourier’s thermal conduction laws) in moments consisting
of the first N + 1 laws of the corresponding infinite systems of Hooke’s laws (Fourier’s thermal
conduction laws) in normalized moments of the stress and couple stress tensors of order r is called
the system of Hooke’s laws (Fourier’s thermal conduction laws) in normalized moments of the stress
and couple stress tensors of the (r,N)th approximation.

Definition 6.2. The set of Hooke’s laws (Fourier’s thermal conduction laws) in moments consisting
of the first N + 1 laws of the corresponding infinite systems of Hooke’s laws (Fourier’s thermal
conduction laws) in normalized moments of order r such that each law does not contain the desired
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variables whose order exceeds N is called the system of Hooke’s laws (Fourier’s thermal conduction
laws) in moments of the (r,N)th approximation.

For example, by these definitions, the system of Hooke’s laws (Fourier’s thermal conduction laws)
in normalized moments of the stress and couple stress (the vector of heat influx) tensors of the (0, N)th
approximation is obtained from (5.12) (or (5.17)) by choosing the first N + 1 relations and by taking

into account the expressions for
(+)

u,
(−)

u ,
(+)

ϕ, and
(−)

ϕ (
(+)

T and
(−)

T ) obtained by solving the systems of
equations (6.11) (or (6.16)).

For example, in a similar way, the system of Hooke’s laws (Fourier’s thermal conduction laws) in
moments of the (0, N)th approximation is obtained from (5.13) (relations in the first row in (5.18)) by
taking the first N + 1 relations. Hence the choice of the first N + 1 relations means that k = 0, N .

6.2. Boundary conditions in moments in the theory of thin solids
To obtain well-posed statements of problems in the theory of thin solids, any system of equations,

consistent or inconsistent (in the simplified scheme of reduction to a finite-order system) with the
boundary conditions on the face surfaces, should be supplemented with the boundary conditions on

the contour ∂
(−)

S of the main base surface
(−)

S .
On the lateral face Σ, kinematic conditions (the displacement and rotation vectors) or static condi-

tions (the stress and couple stress vectors) can be given. The kinematic conditions can be given on one
part, Σ1, and the static conditions can be given on the other part, Σ2 (Σ1 ∪ Σ2 = Σ, Σ1 ∩ Σ2 = ∅).
In the case of nonisothermal processes, the boundary conditions of heat content of the first kind (of
Dirichlet type) or of the second kind (of Neumann type) or even of third kind (the heat exchange with the
environment according to the Newton law) can also be posed on part of the lateral face. In what follows,
we consider the kinematic, physical, and thermal boundary conditions on the lateral face and use them
to obtain the corresponding boundary conditions in moments on the boundary contour of the main base
surface.

In what follows, we assume that the lateral face Σ consists of ruled surfaces and some nonnegative
integers r and N are fixed. The fact that such numbers are given means that we consider systems of
equations in moments of the (r,N)th approximation, systems of Hooke’s laws and Fourier’s thermal
conduction laws in normalized moments or in moments of the (r,N)th approximation, as well as the
corresponding boundary conditions on the boundary contour of the main base surface and the initial

conditions in moments. Then, obviously, the unknowns are the moments
(m)

P
˜
P,

(m)

µ
˜
µ ,

(m)

u ,
(m)

ϕ,
(m)

T ; m = 0, N .

For example, for the moment theory of thin solids in nonisothermal processes, the problem is well posed

if 2N + 2 vectors of kinematic boundary conditions are posed on the boundary contour ∂
(−)

S of the main

base surface
(−)

S and N + 1 boundary conditions of heat content are posed on the part ∂
(−)

S q ⊆ ∂
(−)

S (in
the case of the first boundary value problem); or 2N + 2 vector static boundary conditions are posed

on ∂
(−)

S and N + 1 boundary conditions of heat content are posed on the part ∂
(−)

S q ⊆ ∂
(−)

S (in the case
of the second boundary value problem); or 2N + 2 vector kinematic boundary conditions are posed

on the part ∂
(−)

S 1 of the contour and 2N + 2 vector static boundary conditions are posed on the other

part ∂
(−)

S 2 (∂
(−)

S 1 ∪ ∂
(−)

S 2 = ∂
(−)

S , ∂
(−)

S 1 ∩ ∂
(−)

S 2 = ∅), while N + 1 boundary conditions of heat content are

posed on ∂
(−)

S q ⊆ ∂
(−)

S (in the case of the mixed boundary value problem). We note that, in the case of
dynamic problems, the boundary conditions in moments must be supplemented with initial conditions
in moments, which we consider later.

6.3. Kinematic boundary conditions in moments
Suppose that the displacement vectors u and the rotation vectors ϕ are given on the lateral

face Σ; i.e.,

u(x′, x3, t)
∣∣∣
Σ

= f(x′, x3, t), ϕ(x′, x3, t)
∣∣∣
Σ

= g(x′, x3, t).
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Then the kinematic boundary conditions in moments of the N th approximation with respect to the
system of orthonormal shifted Chebyshev polynomials of the second kind can be represented as

(k)

u(x′, t) =
(k)

f (x′, t),
(k)

ϕ(x′, t) =
(k)

g(x′, t), k = 0, N, x′ ∈ ∂
(−)

S . (6.17)

Here
(k)

f (x′, t) and
(k)

g(x′, t), k = 0, N , are known vector fields on ∂
(−)

S treated as the moments of known
vector fields f(x′, x3, t) and g(x′, x3, t), respectively.

6.4. Physical boundary conditions in moments

Suppose that, on the lateral face Σ, the stress vectors P(x′, x3, t) and the couple stress vec-
tors µ(x′, x3, t) are given. Then, owing to the Cauchy formulas, the boundary conditions on the lateral
face Σ can be written as

m · P
˜
P(x′, x3, t) = P(x′, x3, t), m · µ

˜
µ(x′, x3, t) = µ(x′, x3, t), x′ ∈ ∂

(−)

S . (6.18)

Here m is the unit normal vector at an arbitrary point on the lateral face.
Prior to obtaining the boundary conditions in moments, we derive several geometric relations on the

lateral face for the new parametrization of the domain occupied by a thin solid, assuming that h ⊥
(−)

S .
Denoting by dΣ an elementary area with one of the vertices at the point with coordinates (x1, x2, x3) and
with sides dr = rI dxI and h dx3 = r3 dx3, we obtain

dΣ = dΣm = dr× h dx3 = rI × r3 dxI dx3 =
√

gεIJrI dxJ dx3 =
√

(−)
g gK−

I εJKrJ dxI dx3,

dΣ = dΣm =
√

gεIJrI dxJ dx3 =
√

(−)
g gK−

I εJKrJ dxI dx3,

d
(+)

Σ = d
(+)

Σ
(+)

m =
√

(+)
g εIJrI+dxJ dx3 =

√
(−)
g gK−

I+ εIJrJ+
dxI dx3,

d
(−)

Σ = d
(−)

Σ
(−)

m =
√

(−)
g εIJrI−dxJ dx3.

(6.19)

The last two relations in (6.19) can be obtained in a similar way. Hence we can obtain them from the

first relation for x3 = 1 and x3 = 0, respectively. Here d
(+)

Σ is a surface area element with one vertex at the

point
(+)

M with coordinates (x1, x2, 1) and with sides d
(+)

r = rI+ dxI and h dx3 = r3 dx3; d
(−)

Σ is a surface

area element with one vertex at the point
(−)

M with coordinates (x1, x2, 1) and with sides d
(−)

r = rI− dxI

and h dx3 = r3 dx3;
(+)

m and
(−)

m are the unit normal vectors at the points
(+)

M and
(−)

M , respectively.
Next, from the first and third relations in (6.19) we obtain

dΣ =
(−)

ϑ

√
gKLεKIεLJ dxI dxJ√
gK−L−εKIεLJ dxI dxJ

d
(−)

Σ =

√
gM−N−εMKεNLgK−

I gL−
J dxI dxJ

√
gK−L−εKIεLJ dxI dxJ

d
(−)

Σ. (6.20)

Multiplying the first, second, and third relations in (6.19) by rK , rK+ , and rK− , respectively, we obtain

dΣmI =
√

gεIJ dxJ dx3, d
(+)

Σ
(+)
mI+ =

√
(+)
g εIJ dxJ dx3, d

(−)

Σ
(−)
mI− =

√
(−)
g εIJ dxJ dx3,

which implies that

dΣmI =
(+)

ϑ d
(+)

Σ
(+)
mI+ =

(−)

ϑ d
(−)

Σ
(−)
mI−. (6.21)

Now we find the boundary conditions in moments. First, note that (6.18) can be represented as

mIPI = P(x′, x3, t), mIµ
I = µ(x′, x3, t), x′ ∈ ∂

(−)

S . (6.22)
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By multiplying each relation in (6.22) by dΣ and by taking into account (6.21), we find

(−)
mI−gI

J−PJ−= P
dΣ

d
(−)

Σ

(−)

ϑ−1,
(−)
mI−gI

J−µJ−= µ
dΣ

d
(−)

Σ

(−)

ϑ−1, x′ ∈ ∂
(−)

S . (6.23)

By introducing the notation

a(x′, x3) =
dΣ

d
(−)

Σ

(−)

ϑ =

√
gM−N−εMKεNLgK−

I gL−
J dxI dxJ

√
gK−L−εKIεLJ dxI dxJ

(−)

ϑ−1, (6.24)

we can rewrite (6.23) in the form

(−)
mI−gI

J−PJ−= a(x′, x3)P(x′, x3, t),
(−)
mI−gI

J−µJ−= a(x′, x3)µ(x′, x3, t), x′ ∈ ∂
(−)

S . (6.25)

By representing a(x′, x3) as a series in x3,

a(x′, x3) =
∞∑

s=0

As(x′)(x3)s, As(x′) =
1
s!

(
∂sa

∂(x3)s

)
x3=0

, (6.26)

and by taking into account the first relation in (3.15), from (6.25) we obtain the following boundary
conditions of the rth approximation:

(−)
mI−g

(r)

I
J−PJ−= a(r)(x

′, x3)P,
(−)
mI− g

(r)

I
J−µJ−= a(r)(x

′, x3)µ, r ∈ N0, x′ ∈ ∂
(−)

S, (6.27)

a(r)(x
′, x3) =

r∑
s=0

As(x′)(x3)s, r ∈ N0.

By taking into account the first relations in (3.15) and (6.26) and by matching the coefficients of like
powers of x3 on the right- and left-hand sides, from (6.25) we obtain

(−)
mI−A

(s)

I−
J+PJ−= A(s)(x

′)P,
(−)
mI−A

(s)

I−
J+µJ−= A(s)(x

′)µ, s ∈ N0, x′ ∈ ∂
(−)

S. (6.28)

Relations (6.25) and (6.28) are equivalent, and relations (6.27) are equivalent to the first r + 1 relations
in (6.28). By applying the kth moment operator to (6.27), in view of (4.3), we obtain

(−)
mI−

(k)

M
(
g
(r)

I
J−PJ−) =

(k)

M(a(r)P),
(−)
mI−

(k)

M
(
g
(r)

I
J−µJ−) =

(k)

M(a(r)µ), r = 0, N, x′ ∈ ∂
(−)

S . (6.29)

By taking into account (6.28), from (6.29) we obtain the relations

(−)
mI−A

(s)

I−
J+

(k)

PJ−= A(s)

(k)

P,
(−)
mI−A

(s)

I−
J+

(k)

µJ−= A(s)
(k)

µ, s = 0, r, k = 0, N, x′ ∈ ∂
(−)

S , (6.30)

which can also be obtained by applying the kth moment operator to relations (6.28).
We note that, on the basis of (6.28), we can exclude the moments of desired and known variables

whose order exceeds N from (6.29). Then we obtain relations which we call the static boundary
conditions in moments of the (r,N)th approximation. They are equivalent to (6.30), and hence it is
expedient to consider relations (6.30) as the static boundary conditions in moments of the (r,N)th
approximation.

6.5. Boundary conditions of heat content in moments

We consider the boundary conditions of the first (Dirichlet), second (Neumann), and third (heat
exchange with environment according to the Newton law) kinds [25] and derive the corresponding
boundary conditions in moments from them.
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6.5.1. Boundary conditions of the first kind in moments. In this case, temperature is given on part
Σq ⊆ Σ of the lateral face Σ:

T (x′, x3, t)
∣∣∣
Σq

= T0(x′, x3, t).

Hence, by analogy with (6.17), the desired boundary conditions of the first kind in moments have the
form

(k)

T (x′, t) =
(k)

T 0(x′, t), k = 0, N, x′ ∈ ∂
(−)

S q ⊆ ∂
(−)

S, (6.31)

where
(−)

T 0(x′, t), k = 0, N , are known moments of the known scalar field T0(x′, x3, t).

6.5.2. Boundary conditions of the second kind in moments. In this case, the following condition is
satisfied on part Σq ⊆ Σ of the lateral face:

m · q(x′, x3, t)
∣∣∣
Σq

= q0(x′, x3, t) (mIq
I
∣∣∣
Σq

= q0).

Hence, omitting the derivation, by analogy with (6.30) we obtain the desired conditions in the form

(−)
mI−A

(s)

I−
J+qJ−(x′, t) = A(s)

(k)
q 0(x′, t), s = 0, r, k = 0, N, x′ ∈ ∂

(−)

S q ⊆ ∂
(−)

S . (6.32)

Relations (6.32) will be called the boundary conditions of heat content of the second kind in moments of
the (r,N)th approximation.

6.5.3. Boundary conditions of the third kind in moments. In this case, the boundary conditions can
be represented as

m · q(x′, x3, t)
∣∣
Σq

= β(Tc − T
∣∣
Σq

) (mIq
I
∣∣
Σq

= β(Tc − T
∣∣
Σq

)). (6.33)

Then, by analogy with (6.32), from (6.33) we obtain the following expressions for the desired conditions:

(−)
mI−A

(s)

I−
J+qJ−(x′, t) = A(s)β(

(k)

T c −
(k)

T ), s = 0, r k = 0, N x′ ∈ ∂
(−)

S q ⊆ ∂
(−)

S . (6.34)

Relations (6.34) will be called the boundary conditions of heat content of the third kind in moments of
the (r,N)th approximation.

When writing (6.34), we have assumed that the convective heat transfer coefficient β is independent
of x3. If β depends on x3, then, to find the kth moment of the right-hand side in (6.33), it is necessary to
use the first relation in (4.10) for s = 0. We also note that it is possible to consider boundary conditions
of the form more general than the above [25]. If we need to obtain systems of equations of motion and
heat influx in moments from some other representations similar to (3.18) and (3.21), then we should
represent the systems of boundary conditions of physical and heat content (conditions of the second and
third kinds) in moments in an appropriate form. For brevity, we do not consider these problems in the
present paper.

6.6. Initial conditions in moments
If nonstationary problems are studied, then it is necessary to pose some initial conditions at some

time instant t = t0. Suppose that the initial conditions for the nonstationary (dynamic) problem of the
moment MTDS are given in the form

u(x′, x3, t)
∣∣
t=t0

= u0(x′, x3), ∂tu(x′, x3, t)
∣∣
t=t0

= v0(x′, x3),

ϕ(x′, x3, t)
∣∣
t=t0

= ϕ0(x′, x3), ∂tϕ(x′, x3, t)
∣∣
t=t0

= ω0(x′, x3),
(6.35)

and, for the nonstationary thermal conduction problem, the initial condition is given in the form

T (x′, x3, t)
∣∣
t=t0

= T 0(x′, x3). (6.36)
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From (6.35), for the desired initial conditions in moments we obtain the expressions

(k)

u(x′, t)
∣∣
t=t0

=
(k)

u0(x′), ∂t
(k)

u(x′, t)
∣∣
t=t0

=
(k)

v0(x′),
(k)
ϕ(x′, t)

∣∣
t=t0

=
(k)
ϕ0(x′), ∂t

(k)
ϕ(x′, t)

∣∣
t=t0

=
(k)
ω0(x′), k = 0, N, x′ ∈ ∂

(−)

S.
(6.37)

In a similar way, from (6.36) for the nonstationary thermal conduction problem we obtain the
following system of initial conditions in moments:

(k)

T (x′, t)
∣∣
t=t0

=
(k)

T 0(x′), k = 0, N, x′ ∈ ∂
(−)

S . (6.38)

We note that (6.37) and (6.38) form the system of initial conditions in moments of the N th approximation
for the dynamic problem of moment thermomechanics of thin deformable solids (TMTDS).

7. CLASSIFICATION AND STATEMENT OF PROBLEMS
IN THE THEORY OF THIN SOLIDS

The classification and statement of problems in both the moment and the classical theory of thin
solids is performed in the same way as in mechanics of deformable solids (MDS) [25].

In contrast to MDS, in the case considered here, the approximate CE and the equations of motion
and thermal conduction in moments are considered. In this case, the boundary conditions are posed on
the boundary contour of the main base surface in moments.

7.1. Classification of MTDS problems in moments
For boundary conditions and the corresponding boundary value problems in the moment theory, the

following classification is accepted, which we formulate in the form of definitions.

Definition 7.1. If on the boundary contour ∂
(−)

S only the kinematic boundary conditions in moments
of the N th approximation (6.19) are given, then such conditions are called the boundary conditions of
first kind and the MTDS problem using these conditions is called the first boundary value problem.

Definition 7.2. If on the boundary contour ∂
(−)

S only the static boundary conditions in moments of
the (r,N)th approximation (6.32) are given, then such conditions are called the boundary conditions
of the second kind and the MTDS problem using these conditions is called the second boundary value
problem.

Definition 7.3. If, on one part ∂
(−)

S 1 of the boundary contour ∂
(−)

S , the kinematic boundary conditions in

moments of the N th approximation (6.19) are given and on the other part ∂
(−)

S 2 of this contour, the static

boundary conditions in moments of the (r,N)th approximation (6.32) are given, ∂
(−)

S 1 ∪ ∂
(−)

S 2 = ∂
(−)

S ,

∂
(−)

S 1 ∩ ∂
(−)

S 2 = ∅, then such conditions are called mixed boundary conditions and the MTDS problem
using these conditions is called the mixed boundary value problem of MTDS.

It should be noted that, in the case of dynamical problems, at a certain time instant t = t0, the initial
conditions in moments of the N th approximation (6.37) must be given. If the thin solid is unbounded,
then some conditions in moments must be posed at infinity. Excluding the characteristics of the moment
theory from the above definitions, we obtain the corresponding definitions for the classical MTDS.

7.2. Statement of TMTDS problems in moments
We consider the statements of coupled and uncoupled dynamical problems in moments of the (r,N)th

approximation of the moment TMTDS, as well as of the unsteady temperature problem in moments
the (r,N)th approximation of the moment TMTDS, and discuss how to obtain some other special cases
of problem statements from them.

The statement of the coupled dynamical problem in moments of the (r,N)th approximation of the
moment TMTDS includes:
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1) the system of equations of motion in moments of the (r,N)th approximation of the moment
TMTDS;

2) the system of equations of the heat influx in moments of the (r,N)th approximation of the moment
TMTDS;

3) the system of CE in normalized moments of the stress and couple stress tensors of the (r,N)th
approximation of the moment TMTDS or the system of CE in moments of the (r,N)th approximation
of the moment TMTDS for the simplified reduction scheme;

4) the system of Fourier’s thermal conduction laws in normalized moments of the heat influx vector of
the (r,N)th approximation of the moment TMTDS or the system of Fourier’s thermal conduction laws
in moments of the (r,N)th approximation of the moment TMTDS for the simplified reduction scheme;

5) depending on the type of boundary value problems, one of the following systems of boundary
conditions in moments:

5a) the system of kinetic boundary conditions in moments of the N th approximation (6.17) for the
first boundary value problem and a set of systems of boundary conditions of heat content of three types
in moments (6.31), (6.32), or (6.34);

5b) the system of static boundary conditions in moments of the (r,N)th approximation of the
moment TMTDS (6.30) for the second boundary value problem and a set of systems of boundary
conditions of heat content of three types in moments (6.31), (6.32), or (6.34);

5c) the system of kinematic boundary conditions in moments of the N th approximation (6.17) on a
part of the boundary contour and the system of static boundary conditions in moments of the (r,N)th
approximation of the moment TMTDS (6.30) on the other part of the boundary contour for the mixed
boundary value problem and a set of systems of boundary conditions of heat content of three types in
moments (6.31), (6.32), or (6.34);

6) the systems of initial conditions for the kinematic (6.37) and heat (6.38) intensities in moments of
the N th approximation.

If the system of heat influx equations in moments of the (r,N)th approximation does not contain

mechanical characteristics (the moments of the stress tensors
(k)

P
˜
P and of the couple stress tensors

(k)

µ
˜
µ), then

the nonstationary temperature problem in moments of the (r,N)th approximation is studied separately.
This problems includes:

1) the system of heat influx equations in moments of the (r,N)th approximation without mechanical
characteristics;

2) the system of Fourier thermal conduction laws in normalized moments of the heat influx vector of
the (r,N)th approximation of the moment TMTDS or the system of Fourier thermal conduction laws in
moments of the (r,N)th approximation of the moment TMTDS for the simplified reduction scheme;

3) a set of of systems of boundary conditions of heat content of three types in moments (6.31), (6.32),
or (6.34);

4) the system of initial conditions of heat content in moments of the N th approximation.
In this case, the dynamic problem in moments of the (r,N)th approximation of the moment

TMTDS splits into the following two problems: the nonstationary temperature problem in moments
of the (r,N)th approximation whose solution determines the temperature field which, in what follows,
is assumed to be known and the dynamic problem in moments of the (r,N)th approximation of the
moment TMTDS in nonisothermal processes with known temperature field, which includes:

1) the system of equations of motion in moments of the (r,N)th approximation of the moment
TMTDS in nonisothermal processes with known temperature field;

2) the system of CE in normalized moments of the stress and couple stress tensors of the (r,N)th
approximation of the moment TMTDS with known temperature field or the system of CE in moments
of the (r,N)th approximation of the moment TMTDS for the simplified reduction scheme;

3) depending on the type of the boundary value problems, one of the following systems of boundary
conditions in moments:

3a) the system of kinematic boundary conditions in moments of the N th approximation (6.17) for
the first boundary value problem;

3b) the system of static boundary conditions in moments of the (r,N)th approximation of the
moment TMTDS for the second boundary value problem;
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3c) the system of kinematic boundary conditions in moments of the N th approximation (6.17) on a
part of the boundary contour and the system of static boundary conditions in moments of the (r,N)th
approximation of the moment TMTDS (6.30) on the other part of the boundary contour for the mixed
boundary value problem.

4) the system of kinematic initial conditions in moments of the N th approximation (6.37).
Problems for nonisothermal processes, which are divided into the temperature problem and the

TMTDS problem with known temperature field, are called uncoupled TMTDS problems [25].
Thus, in the preceding we have given the statements of coupled and uncoupled dynamic problems

in moments of the (r,N)th approximation of the moment TMTDS as well as of the nonstationary
temperature problem in moments of the (r,N)th approximation. From these statements of the problems,
one can readily obtain statements of the corresponding static and quasistatic problems and also,
by considering various values of r and N , statements of the problems in moments of the desired
approximations. Furthermore, one can obtain statements of the problems for isothermal processes.
Finally, if in all statements of the problems given or mentioned above one neglects the moments of
couple stresses and of the internal rotation vector, then one obtains the corresponding statements
of the problems in moments of the (r,N)th approximation in the classical TMTDS and MTDS.
Statements of the problem of the moment theory for an arbitrary anisotropic material under the classical
parametrization of the domain occupied by the thin solid on the basis of Legendre polynomials was
considered in [27].

The present paper essentially extends Vekua’s theory [23] to the moment TMTDS for an arbitrary
anisotropic material; in contrast to [23], we use Chebyshev polynomials of the second kind instead of
Legendre polynomials, which permits one to obtain more concise and general relations than in the case
where Legendre polynomials are used.
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