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Abstract—We consider various methods for constructing linearly independent isotropic, gyrotropic,
orthotropic, and transversally isotropic tensors. We state assertions and theorem that permit one to
construct these tensors. We find linearly independent above-mentioned tensors up to and including
rank six. The components of the tensor may have no symmetry or have symmetries of various types.

DOI: 10.3103/S0025654409010026

1. ON ISOTROPIC TENSORS IN R
3

It is known [1–5] that E
˜
E = riri = gijrirj is the only isotropic tensor of rank 2 that can be used to

represent any other isotropic tensor a
˜
a of rank 2 in the form a

˜
a = aE

˜
E, where a is a scalar; i.e., an arbitrary

isotropic tensor of rank 2 is a spherical tensor.
The tensors

C
˜
C
˜
C(1) = E

˜
EE

˜
E = ririrjrj, C

˜
C
˜
C(2) = rirjrirj, C

˜
C
˜
C(3) = riE

˜
Eri = rirjrjri (1.1)

are three linearly independent (irreducible to each other) tensors of rank 4. The general expression for an
arbitrary isotropic tensor of rank 4 is their linear combination

C
˜
C
˜
C =

3∑

k=1

akC
˜
C
˜
C(k).

If we pay attention to the structure of isotropic tensors of rank 2 and rank 4 in (1.1), then we easily
see that they can be obtained from the corresponding multiplicative bases by pairwise convolution
(contraction) of indices of the basis vectors and by exhausting all possible cases of such contraction.
By way of example, let us also construct all linearly independent isotropic tensors of rank 6. The
multiplicative basis of a tensor of rank 6 is rirjrkrlrmrn. By contracting the indices pairwise arbitrarily,
we obtain some isotropic tensor of rank 6. For example,

ririrkrkrmrm = E
˜
EE

˜
EE

˜
E. (1.2)

All other isotropic tensors of rank 6 can be obtained from (1.2) by permutations of basis vectors.
Obviously, by rearranging the basis vectors in (1.2), we obtain 6! = 720 permutations (isotropic tensors
of rank 6) in the general case. Of these tensors, only fifteen are linearly independent (irreducible to each
other) [3, 5]. To obtain these linearly independent tensors of rank 6, it suffices, for example, to consider
the following tensors:

ririrkrkrmrm, rirkrirkrmrm, rirkrkrirmrm, rirkrkrmrirm, rirkrkrmrmri. (1.3)

It is clear that the basis vector ri occupies all possible positions in (1.3). Now by keeping the vectors ri

and ri at their positions in (1.3) and by permuting the other vectors, we obtain two additional tensors
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TO THE CONSTRUCTION OF LINEARLY INDEPENDENT TENSORS 15

from each tensor (1.3):

ririrkrkrmrm, ririrkrmrkrm, ririrkrmrmrk,

rirkrirkrmrm, rirkrirmrkrm, rirkrirmrmrk,

rirkrkrirmrm, rirkrmrirkrm, rirkrmrirmrk,

rirkrkrmrirm, rirkrmrkrirm, rirmrkrkrirm,

rirkrkrmrmri, rirkrmrkrmri, rirkrmrmrkri.

(1.4)

One can readily see that, using the notation for isotropic tensors of rank 4 and the unit tensor of
rank 2, we can rewrite (1.4) as

E
˜
EE

˜
EE

˜
E = C

˜
C
˜
C(1)E˜

E = E
˜
EC

˜
C
˜
C(1) E

˜
EC

˜
C
˜
C(2), E

˜
EC

˜
C
˜
C(3),

C
˜
C
˜
C(2)E˜

E, rirkrirmrkrm, rirkriE
˜
Erk,

C
˜
C
˜
C(3)E˜

E, rirkrmrirkrm, rirkrmrirmrk,

riE
˜
Ermrirm, rirkrmrkrirm, rirmE

˜
Erirm,

riC
˜
C
˜
C(1)r

i, riC
˜
C
˜
C(2)r

i, riC
˜
C
˜
C(3)r

i.

(1.5)

Nine of the tensors (1.4) can be obtained by taking inner products of isotropic tensors of rank 4 (1.1);
i.e.,

C
˜
Cij = C

˜
C
˜
C(i) · C˜

C
˜
C(j), i, j = 1, 2, 3. (1.6)

The other six tensors are contained as summands [3] in the tensor product of the discriminant tensor
C
˜
C
¯
C = Cijkrirjrk by itself:

C
˜
C
¯
CC

˜
C
¯
C = rirjrk[ri(rjrk − rkrj) + rj(rkri − rirk) + rk(rirj − rjri)]. (1.7)

Hence an arbitrary tensor C
˜
C of rank 6 can be represented as a linear combination of the tensors

(1.6) and the tensors occurring as summands on the right-hand side in (1.7); i.e., the tensor C
˜
C can be

represented as

C=
3∑

i,j=1

aijC
˜
C
˜
C(i) ·C˜

C
˜
C(j) + rirjrk[ri(b1rjrk + b2rkrj) + rj(b3rkri + b4rirk) + rk(b5rirj + b6rjri)]. (1.8)

Next, omitting details concerning isotropic tensors in R
3, note that the following theorems hold.

Theorem 1.1. There exist no isotropic tensors of odd rank.

Theorem 1.2. Any isotropic tensor of given even rank in R
3 can be constructed from the

corresponding multiplicative basis by pairwise contraction of indices of the basis vectors.

Theorem 1.3. All linearly independent (irreducible to each other) isotropic tensors of given
even rank are contained in the set of permutations obtained by all possible permutations of
the basis vectors in any isotropic tensor of the same rank constructed from the corresponding
multiplicative basis by pairwise contraction of the indices of the basis vectors.

2. ON ORTHOTROPIC TENSORS IN R
2 AND R

3. REPRESENTATIONS
OF ORTHOTROPIC TENSORS OF RANK 2 AND RANK 4

We construct linearly independent orthotropic tensors of rank 2, 4, and 6 and state several theorems
that permit one to construct orthotropic tensors. Let us introduce the definitions.

Definition 2.1. The group of coordinate transformations

xα′ = aαxα < α = 1, 2, 3 >,
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16 NIKABADZE

where (a1, a2, a3) is one of the triples

(1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1),
(1,−1,−1), (−1, 1,−1), (−1,−1, 1), (−1,−1,−1),

is called the orthotropy group in R
3.

Definition 2.2. The group of coordinate transformations

xα′ = aαxα < α = 1, 2 >,

where (a1, a2) is one of the pairs

(1, 1), (−1, 1), (1,−1), (−1,−1),

is called the orthotropy group in R
2.

Note that the orthotropy group in R
3, which is a subgroup of the full orthogonal group of coordinate

transformations I, can be described with the use of the matrices [5]

E =

⎛

⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎠ , S1 =

⎛

⎜⎜⎜⎝

−1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎠ , S2 =

⎛

⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 1

⎞

⎟⎟⎟⎠ , S3 =

⎛

⎜⎜⎜⎝

1 0 0

0 1 0

0 0 −1

⎞

⎟⎟⎟⎠ ,

D1 =

⎛

⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 −1

⎞

⎟⎟⎟⎠ , D2 =

⎛

⎜⎜⎜⎝

−1 0 0

0 1 0

0 0 −1

⎞

⎟⎟⎟⎠ , D3 =

⎛

⎜⎜⎜⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟⎟⎟⎠ , C =

⎛

⎜⎜⎜⎝

−1 0 0

0 −1 0

0 0 −1

⎞

⎟⎟⎟⎠ ;

(2.1)

the orthotropy group in R
2 can be represented by the matrices

E =

⎛

⎝1 0

0 1

⎞

⎠ , S1 =

⎛

⎝−1 0

0 1

⎞

⎠ , S2 =

⎛

⎝1 0

0 −1

⎞

⎠ , C =

⎛

⎝−1 0

0 −1

⎞

⎠ . (2.2)

A description of a group with the use of matrices is called a matrix representation of the group. If the
number of matrices in a matrix representation of a group is finite, then the group is called a point group.
Otherwise, the group is said to be infinite or continuous.

Note that the orthotropy group in R
3 contains the inversion group, the groups of reflections in planes,

and the symmetry groups with respect to axes in R
3, and the orthotropy group in R

2 consists of the
inversion group and the groups of reflections in the axes in R

2.
Now let us introduce the definition of an orthotropic tensor.

Definition 2.3. A tensor whose symmetry group is the orthotropy group in R
3 (resp., R

2) is called an
orthotropic tensor in R

3 (resp., R
2).

Definition 2.4. The coordinate transformation group that does not change the values of tensor
components is called the symmetry group of the tensor.

In what follows, we construct linearly independent orthotropic tensors of rank 2, rank 4, and rank 6.
Prior to constructing these tensors, note that the number of linearly independent tensors of given rank
whose symmetry group is a point group is given by the formula [4–6]

k =
1
N

N∑

m=1

χn(gm), (2.3)

where N is the order of the group (the number of matrices in a matrix representation of the group), the
gm are the matrices of the symmetry group, χ(gm) is the character of the matrix representation of the
symmetry group, and n is the rank of the tensors.

Using the results obtained in [1, 5–7], we conclude that the following theorems hold.
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Theorem 2.1. There exist no orthotropic tensors of odd rank.

Theorem 2.2. Orthotropic tensors of even rank r = 2k, where k is an arbitrary finite positive
integer, can be obtained from the multiplicative basis of tensors of the same rank by using it to
form a tensor consisting of k = r/2 pairs of basis vectors of the same name under the condition
that summation over repeated indices is not performed.

We note that the choice of pairs of basis vectors which are assigned the same name is absolutely
arbitrary. In particular, the basis vectors bearing the same name can appear near each other or far
from each other. For example, an orthotropic tensor of rank 6 can be obtained from the multiplicative
basis rirjrkrlrmrn if we assign one name to ri and rj , another name to rk and rl, and a third name
to rm and rn. As a result, we obtain the following orthotropic tensors of rank 6:

rαrαrβrβrγrγ < α, β, γ = 1, 2, 3 >, (2.4)

where rα is an orthonormal basis.
In (2.4), the basis vectors1) of same name occur near each other. Of course, one could consider tensors

obtained from (2.4) by an arbitrary permutation of the basis vectors, for example,

rαrβrαrβrγrγ < α, β, γ = 1, 2, 3 > . (2.5)

In (2.5), the same-name basis vectors with names α and β are far from each other. Obviously, it
follows from (2.4) and (2.5) that the pairs of same-name basis vectors can also be of same name. For
example, this is true for the tensors

rαrαrβrβrαrα, rαrβrαrβrβrβ, < α, β, γ = 1, 2, 3 > .

From any permutation of an orthotropic tensor of rank 6 [for example, from (2.4)], one can obtain the
entire set of orthotropic tensors of rank 6.

Obviously, from the set of all 6! = 720 permutations of the tensors (2.4), which also contains equal
orthotropic tensors, one can always choose linearly independent tensors, whose number is less than the
total number of permutations. Hence everything said above about a tensor of rank 6 also concerns a
tensor of any even rank, which can be stated as the following theorem.

Theorem 2.3. All linearly independent orthotropic tensors of given even rank are contained in
the set of permutations of basis vectors of any orthotropic tensor of the same rank composed of
the corresponding multiplicative basis whose basis vectors are assigned pairwise equal names
by using lowercase Greek letters over which no summation is performed.

Once the isotropic tensors of given even rank have been constructed, the corresponding orthotropic
vectors can readily be constructed from them.

Theorem 2.4. The orthotropic tensors of given even rank can readily be constructed from
isotropic tensors of the same rank by replacing same-name basis vectors with Latin indices by the
corresponding same-name basis vectors with Greek indices. (For example, rirkrirk is replaced by
the tensor rαrβrαrβ .)

Note that the replacement of same-name Latin indices by same-name Greek indices is equivalent to
the prohibition of summation over repeated Latin indices. Therefore, Theorem 2.4 can be briefly stated
as follows.

The orthotropic tensors corresponding to isotropic tensors represented by basis vectors of an
orthotropic basis can be obtained from these isotropic tensors by prohibiting summation over
repeated Latin indices.

The following theorem also holds.

Theorem 2.5. A set of orthotropic tensors containing all linearly independent orthotropic
tensors can be obtained from all linearly independent isotropic tensors of given even rank
constructed from the basis vectors of an orthonormal basis by prohibiting summation over
repeated indices.

1)The notation < α, β, γ = 1, 2, 3 > means that α, β, γ take the values 1, 2, 3 and summation over repeated indices is not
performed.
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18 NIKABADZE

We use Theorem 2.5 to construct all orthotropic tensors of rank 6 from the rank 6 isotropic ten-
sors (1.4). By the assumptions of Theorem 2.5, from (1.4) we obtain the following linearly independent
orthotropic tensors of rank 6:

rαrαrβrβrγrγ ; rαrαrβrγrβrγ , β �= γ; rαrαrβrγrγrβ, β �= γ; rαrβrαrβrγrγ , β �= α;
rαrβrαrγrβrγ , α �= β, β �= γ; rαrβrαrγrγrβ, α �= β, β �= γ; rαrβrβrαrγrγ , α �= β;
rαrβrγrαrβrγ , β �= γ, γ �= α; rαrβrγrαrγrβ , α �= β, β �= γ, γ �= α;
rαrβrβrγrαrγ , α �= β, γ �= α; rαrβrγrβrαrγ , α �= β, β �= γ, γ �= α;
rαrγrβrβrαrγ , α �= β, β �= γ, γ �= α; rαrβrβrγrγrα, α �= β, α �= γ;
rαrβrγrβrγrα, α �= β, β �= γ, γ �= α; rαrβrγrγrβrα, α �= β, β �= γ, γ �= α; α, β, γ = 1, 2, 3.

(2.6)

From the first object in (2.6), assigning all the above values to the indices, we obtain 27 tensors; from
the second object in the first row, the objects in the second row, and the first object in the fourth row,
we obtain 18 tensors for each of these objects; from the objects in the third row, the second object in
the fifth row, and the first object in the seventh row, we obtain 12 tensors for each of these objects; and
from the remaining six tensors, we obtain 6 tensors for each of these objects. Simple computations show
that the total number of linearly independent orthotropic tensors of rank 6 is equal to 183. Hence the
same number is obtained by the formula used in the theory of characters of matrix representations of
groups [4–6].

Note that the general expression for an orthotropic tensor of rank 6 is a linear combination of the 183
orthotropic tensors of rank 6 given by (2.6). In other words, an orthotropic tensor of rank 6 has 183
linearly independent components. Of course, if a tensor is symmetric, then the number of linearly
independent components is smaller. Here we do not consider tensor symmetries.

We use the above material to consider orthotropic tensors of rank 2 and 4 in more detail.

2.1. Orthotropic Tensor of Rank 2
The tensor basis of the orthotropy group is formed by the tensors [1, 2, 4, 5, 7]:

γ
˜
γ(α) = rαrα (γ(α)

ij = δαiδαj , γ
˜
γ(α) = γ

(α)
ij rirj) < α = 1, 2, 3 > . (2.7)

By Theorem 2.5, we obtain the same tensors (2.7) from the isotropic tensor E
˜
E = riri of rank 2. Thus,

the number of linearly independent orthotropic tensors of rank 2 is equal to three. Therefore, an arbitrary
orthotropic tensor a

˜
a of rank 2 is a linear combination of these tensors,

a
˜
a =

3∑

α=1

aααrαrα = a11r1r1 + a22r2r2 + a33r3r3. (2.8)

In components, (2.8) can be represented as

aij =
3∑

α=1

aααγ
(α)
ij = a11δ1iδ1j + a22δ2iδ2j + a33δ3iδ3j . (2.9)

2.2. Orthotropic Tensor of Rank 4
By Theorem 2.5, by analogy with (2.6), all linearly independent orthotropic tensors of rank 4 can

be obtained from the isotropic tensors (1.1). Indeed, proceeding just as in the construction of the
tensors (2.6), from (1.1) we obtain

rαrαrβrβ; rαrβrαrβ; rαrβrβrα < α �= β >; α, β = 1, 2, 3. (2.10)

All in all, we have 21 orthotropic tensors of rank 4. Of course, an arbitrary orthotropic tensor of rank 4
can be represented as a linear combination of the tensors (2.10):

C
˜
C
˜
C = Cijklrirjrkrl =

3∑

α,β=1

Cααββrαrαrβrβ +
3∑

α�=β=1

Cαβαβrαrβrαrβ +
3∑

α�=β=1

Cαββαrαrβrβrα. (2.11)
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Using notation (2.7), we can rewrite (2.11) in components as

Cijkl =
3∑

α,β=1

Cααββγ
(α)
ij γ

(β)
kl +

3∑

ω �=ε=1

Cωεωεγ
(ω)
ik γ

(ε)
jl +

3∑

η �=ϑ=1

Cηϑϑηγ
(η)
il γ

(ϑ)
jk . (2.12)

In expanded form, (2.12) can be represented as

Cijkl = C1111γ
(1)
ij γ

(1)
kl + C1122γ

(1)
ij γ

(2)
kl + C1133γ

(1)
ij γ

(3)
kl + C2211γ

(2)
ij γ

(1)
kl + C2222γ

(2)
ij γ

(2)
kl + C2233γ

(2)
ij γ

(3)
kl

+ C3311γ
(3)
ij γ

(1)
kl + C3322γ

(3)
ij γ

(2)
kl + C3333γ

(3)
ij γ

(3)
kl + C1212γ

(1)
ik γ

(2)
jl + C1221γ

(1)
il γ

(2)
jk + C2112γ

(2)
il γ

(1)
jk

+ C2121γ
(2)
ik γ

(1)
jl + C1313γ

(1)
ik γ

(3)
jl + C1331γ

(1)
il γ

(3)
jk + C3113γ

(3)
il γ

(1)
jk + C3131γ

(3)
ik γ

(1)
jl + C2323γ

(2)
ik γ

(3)
jl

+ C2332γ
(2)
il γ

(3)
jk + C3223γ

(3)
il γ

(2)
jk + C3232γ

(3)
ik γ

(2)
jl . (2.13)

If the components of the tensor C
˜
C
˜
C have the symmetry Cijkl = Cklij , then, instead of (2.13), after simple

computations we obtain

Cijkl = C1111γ
(1)
ij γ

(1)
kl + C2222γ

(2)
ij γ

(2)
kl + C3333γ

(3)
ij γ

(3)
kl + C1122(γ

(1)
ij γ

(2)
kl + γ

(2)
ij γ

(1)
kl )

+ C1133(γ
(1)
ij γ

(3)
kl + γ

(3)
ij γ

(1)
kl ) + C2233(γ

(2)
ij γ

(3)
kl + γ

(3)
ij γ

(2)
kl ) + C1212γ

(1)
ik γ

(2)
jl

+ C1221(γ
(1)
il γ

(2)
jk + γ

(2)
il γ

(1)
jk ) + C2121γ

(2)
ik γ

(1)
jl + C1313γ

(1)
ik γ

(3)
jl + C1331(γ

(1)
il γ

(3)
jk + γ

(3)
il γ

(1)
jk )

+ C3131γ
(3)
ik γ

(1)
jl + C2323γ

(2)
ik γ

(3)
jl + C2332(γ

(2)
il γ

(3)
jk + γ

(3)
il γ

(2)
jk ) + C3232γ

(3)
ik γ

(2)
jl . (2.14)

On the right-hand side of (2.14), we have 15 independent components; i.e., an orthotropic tensor of
rank 4 has 15 independent components in the Cosserat theory.

Now if we assume that, in addition to the above symmetries, the components of the tensor C
˜
C
˜
C also

have the symmetry Cijkl = Cjikl, then from (2.14) we obtain the same representation of components of
an orthotropic tensor as in the classical theory of elasticity [5, 8–11] (see also [6, 12–15]).

3. ON GYROTROPIC TENSORS IN R
2 AND TRANSVERSALLY

ISOTROPIC TENSORS IN R
3

We consider the index restriction operation and related problems [16]. We construct gyrotropic and
transversally isotropic tensors of all ranks from 2 to 6. We also present several methods for constructing
transversally isotropic tensors and state several theorems and propositions.

Theorem 3.1. Consider a three-dimensional tensor A of arbitrary rank with components
A

i1i2...ip
j1j2...jq

with respect to the coordinate transformation group

xi′ = xi′(x1, x2, x3). (3.1)

If all lowercase Latin indices with values 1, 2, and 3 are replaced by the corresponding cap-
ital Latin indices with values 1 and 2, then we obtain an extensive tensor A with compo-
nents A

I1I2...Ip

J1J2...Jq
, which is a tensor of the same rank with respect to the coordinate transformation

group

xI′ = xI′(x1, x2, x3), x3′ = x3. (3.2)

Proof. Let us prove this theorem for tensors of rank 2. Let Ai·
·j be the mixed components of this tensor.

We have

Ai′·
·j′ = Di′

i Dj
j′A

i·
·j, Di′

i =
∂xi′

∂xi
, Dj

j′ =
∂xj

∂xj′
. (3.3)
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20 NIKABADZE

By setting i′ = I and j′ = J in the first relation in (3.3) and by taking into account the relations
DI′

3 = ∂xI′/∂x3 = 0 and D3
J ′ = ∂x3/∂xJ ′

= 0 in view of (3.2), we obtain

AI′
·J ′ = DI′

I DJ
J ′AI·

·J , DI′
I =

∂xI′

∂xI
, DJ

J ′ =
∂xJ

∂xJ ′ . (3.4)

Relations (3.4) complete the proof of Theorem 3.1.
Definition 3.1. The replacement of one index of a variable by another index running through a smaller

(larger) set of values is called the operation of restriction (extension) of the index.
Definition 3.2. The replacement of a lowercase Latin index by a capital Latin index is called the

operation of minimal restriction of the index.
Definition 3.3. The replacement of a lowercase Latin index by the index 3 is called the operation of

maximal restriction of the index.
Definition 3.4. The replacement of several lowercase Latin indices of components of a three-

dimensional tensor (a multiplicative basis) by capital Latin indices and the replacement of the other
indices by the index 3 is called the operation of restriction of the tensor components (of the multiplica-
tive basis).

Definition 3.5. The replacement of several dummy lowercase Latin indices in the representation of
a three-dimensional tensor by dummy capital Latin indices and the replacement of the other indices by
the index 3 is called the operation of restriction of the tensor.

Definition 3.6. The operation of minimal restriction of each index (umbral index) of some quantity
(in the spatial tensor representation) is called the operation of minimal restriction of this quantity (of
the spatial tensor).

Definition 3.7. The operation of maximal restriction of each index (dummy index) of some variable
(in the spatial tensor representation) is called the operation of maximal restriction of this quantity (of
the spatial tensor).

Definition 3.8. The tensor with respect to the transformation group (3.2) obtained by the operation
of minimal (maximal) restriction of a spatial tensor is called the minimal (maximal) restriction.

Proposition 3.1. The maximal restriction of components of a spatial tensor is a scalar with
respect to the transformation group (3.2).

Definition 3.9. The number of triples of the indices obtained by the operation of the index restriction
of some variable (tensor components, a multiplicative basis) is called the order of restriction of this
variable (tensor components, a multiplicative basis).

Proposition 3.2. The order of restriction of a tensor is equal to the order of restriction of the
tensor components or of the multiplicative basis.

Now we can state the theorem promised above.
Theorem 3.2. By the index restriction operation, a tensor with respect to the coordinate

transformation group (3.2) is obtained from a spatial tensor.
This more general theorem can be proved by analogy with Theorem 3.1. These theorems can readily

be generalized to the case of an n-dimensional space.
One can readily see that the following statement holds.
Proposition 3.3. A multiplicative basis (multibasis) of any order composed of the basis

vectors r3 and r3 is an object (tensor) invariant under the coordinate transformation group (3.2).
In addition, under the tensor multiplication of any multibasis formed of the basis vectors r3

and r3 on the left and on the right by any tensor with respect to the coordinate transformation
group (3.1), objects (tensors) invariant under the coordinate transformation group (3.2) are
formed. If such multibases are placed between the basis vectors in the representation of any
tensor with respect to the coordinate transformation group (3.1), then a tensor with respect to
the coordinate transformation group (3.2) is obtained.

Note that the index restriction operation of order m = r + s, where r ≤ p and s ≤ q, for the
components A

j1j2...jq

i1i2...ip
of the tensor A can be performed by using the contraction of indices of these
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components with the indices of the product

gi1
3 gi2

3 · · · gir
3 g

ir+1

Ir+1
g

ir+2

Ir+2
· · · gip

Ip
g3
j1g

3
j2 · · · g

3
js

g
Js+1

js+1
g

Js+2

js+2
· · · gJq

jq

of components of the rank 2 unit tensor.
Performing the contraction of indices i1, i2, . . . , ir, j1, . . . , js of the last expression with different

indices of components of a spatial tensor, we in general obtain components of different tensors with
respect to the coordinate transformation group (3.2).

Note that what was said above remains true for coordinate transformation groups more special
that (3.2) under the condition that the third coordinate (x3′ = x3) remains unchanged for all coordinate
transformation groups in question. In particular, instead of (3.2), one can consider the coordinate
transformation group

xI′ = aI′·
·J xJ , x3′ = x3, (3.5)

where the aI′·
·J are constants, or the transversal isotropy group

x1′ = x1 cos ϕ + x2 sinϕ, x2′ = −x1 sin ϕ + x2 cos ϕ, x3′ = x3, 0 ≤ ϕ ≤ 2π, (3.6)

which is also called the transformation group T3.

3.1. Two-Dimensional Gyrotropic Tensors

Let us introduce the definition of a two-dimensional gyrotropic tensor.

Definition 3.10. A two-dimensional tensor is said to be gyrotropic if the symmetry group of this
tensor is the proper orthogonal work (rotation group) in R

2:

x1′ = x1 cos ϕ + x2 sinϕ, x2′ = −x1 sin ϕ + x2 cos ϕ, 0 ≤ ϕ ≤ 2π, (3.7)

Note that the number of linearly independent transversally isotropic and two-dimensional gyrotropic
tensors of rank n whose components do not have any symmetry is given by the formula [4–6]

k =
1
2π

2π∫

0

χn(gϕ) dϕ, (3.8)

where n is the tensor rank, χ(gϕ) is the character of the matrix representation of the transformation
group under study, and gϕ is the matrix of the transformation group.

Note that the numbers of linearly independent transversally isotropic and two-dimensional gyrotropic
tensors of rank n coincide with the numbers of the respective linearly independent components of these
tensors.

In what follows, we consider various methods for constructing linearly independent two-dimensional
and transversally isotropic tensors and construct these tensors up to and including rank 6.

By formula (3.8), where gϕ is the matrix of the transformation group (3.7), one can readily prove that
the following theorem holds.

Theorem 3.3. There exist no two-dimensional gyrotropic tensors of odd rank.
Using the same formula, one can readily show that the number of linearly independent two-

dimensional gyrotropic tensors of rank 0 (scalars) is equal to 1. Any other two-dimensional gyrotropic
tensor is determined up to a constant factor. In a similar way, one can prove that the number of
linearly independent two-dimensional gyrotropic tensors is equal to 2. Indeed, taking into account
the fact that, for the transformation group (3.7), the character of the matrix representation has the
form χ(gϕ) = 2 cos ϕ, from (3.8) we readily obtain

k =
1
2π

2π∫

0

(2 cos ϕ)2dϕ =
1
π

2π∫

0

(1 + cos 2ϕ) dϕ = 2.
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The linearly independent two-dimensional gyrotropic tensors of rank 2 are the following tensors: the
two-dimensional unit tensor I

˜
I = rIrI of rank 2, which is simultaneously a two-dimensional isotropic

tensor of rank 2, and the two-dimensional discriminant tensor (the Levi-Cività tensor) C
˜
C = CIJrIrJ of

rank 2. Hence the general expression for the two-dimensional tensor of rank 2 whose components do not
have any symmetry is a linear combination of these tensors. Now consider two-dimensional gyrotropic
tensors of rank 4. In this case, the number of linearly independent tensors is equal to 6. Indeed, we have

k =
1
2π

2π∫

0

(2 cos ϕ)4dϕ =
1
2π

2π∫

0

2(3 + 4 cos 2ϕ + cos 4ϕ) dϕ = 6.

In a similar way, we can compute the number of linearly independent two-dimensional gyrotropic tensors
of rank 6. It is equal to 20. Indeed, we have

k =
1
2π

2π∫

0

(2 cos ϕ)6dϕ =
1
2π

2π∫

0

2(10 + 15 cos 2ϕ + 6cos 4ϕ + cos 6ϕ) dϕ = 20.

The number of linearly independent two-dimensional gyrotropic tensors of higher ranks can be calcu-
lated in a similar way.

Note that two-dimensional gyrotropic tensors are simultaneously transversally isotropic tensors,
which will be studied below. Therefore, we do not consider their construction here.

3.2. Transversally Isotropic Tensors

Let us introduce the definition of a transversally isotropic tensor.
Definition 3.11. A tensor is said to be transversally isotropic, or monotropic, if the symmetry

group of this tensor is the transversal isotropy group (3.6).
In the case under study, the number of linearly independent tensors of rank n can be found by

formula (3.8), where we now have χ(gϕ) = 1 + 2 cos ϕ, which follows from (3.6).
One can readily prove that the number of linearly independent transversally isotropic tensors is (a)

equal to 1 for the set of tensors of rank 0; (b) equal to 1 for the set of tensors of rank 1; (c) equal to 3 for
the set of tensors of rank 2; (d) equal to 7 for the set of tensors of rank 3; (e) equal to 19 for the set of
tensors of rank 4; (f) equal to 51 for the set of tensors of rank 5; and (g) equal to 141 for the set of tensors
of rank 6.

In what follows, we consider methods for constructing transversally isotropic tensors and construct
linearly independent tensors up to and including rank 6.

It is well known [5] that the tensor basis of the transversal isotropy group consists of the tensors

I
˜
I = rIrI = γ

˜
γ1 + γ

˜
γ2, ε

˜
ε = εIJrIrJ , r3 (3.9)

or

E
˜
E = riri, ε

˜
ε = εIJrIrj , r3, (3.10)

where ri is the unit basis vector. In other words, the tensors (3.9) and (3.10) are called the generating
tensors of the transversal isotropy group.

One can readily see that a transversally isotropic tensor of rank 0 is a scalar and that any other scalar
is determined up to a constant factor. In a similar way, one can readily show that a transversally isotropic
tensor of rank 1 is r3 and that the general expression for a transversally isotropic tensor of rank 1 has the
form a = λr3, where λ is some number.

Since the number of linearly independent transversally isotropic tensors of rank 2 is equal to 3 and
the tensors I

˜
I and ε

˜
ε are two linearly independent transversally isotropic tensors of rank 2, it follows that

the third tensor of rank 2 should be composed with the use of r3. Obviously, this is the tensor r3r3.
Thus, the linearly independent transversally isotropic tensors of rank 2 are the tensors

I
˜
I = rIrI , ε

˜
ε = εIJrIrJ , γ

˜
γ3 = r3r3. (3.11)
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The general form of a transversally isotropic tensor a of rank 2 whose components do not have any
symmetry is a linear combination of the tensors (3.11), i.e.,

a = aI
˜
I + bε

˜
ε + cr3r3. (3.12)

If a
˜
a is a symmetric tensor (a

˜
a = a

˜
aT ), then b = 0, and from (3.12) we obtain the representation

a
˜
a = aI

˜
I + cr3r3 for a

˜
a = a

˜
aT . (3.13)

One can readily prove the following statements.
Proposition 3.4. For any isotropic or transversally isotropic tensor A, the tensors εIJrIArJ ,

rIArI , and r3Ar3 are transversally isotropic tensors.
Proposition 3.5. Isotropic tensors are simultaneously transversally isotropic tensors.
Proposition 3.6. The tensors rIrJrIrJ , εKLrIrKrIrL, εIJrIrKrJrK , and εIJεKLrIrKrJrL are

transversally isotropic tensors.
One can readily see that, by using the tensors (3.9) or (3.10), by grouping them, by considering

all possible cases, and by taking into account Propositions 3.4–3.6, one can construct the set of all
linearly independent transversally isotropic tensors of given rank. This is one of the various methods for
constructing these tensors. It will be called the grouping and searching method. Using this method for
the tensors (3.9) or (3.11) and r3 (grouping them and taking into account Proposition 3.4), one can
readily construct seven linearly independent transversally isotropic tensors:

I
˜
Ir3, r3I

˜
I, rIr3rI , ε

˜
εr3, r3ε

˜
ε, εIJrIr3rJ , r3r3r3 = γ

˜
γr3 = r3γ

˜
γ. (3.14)

A transversally isotropic tensor of rank 3 whose components do not have any symmetry is a linear
combination of the tensors (3.14).

One can readily show that three of the tensors (3.14) occur in the representation of the spatial
gyrotropic tensor ε

˜
ε
¯
ε (a tensor of rank 3):

ε
˜
ε
¯
ε = ε

˜
εr3 + r3ε

˜
ε − εIJrIr3rJ .

Thus, the spatial gyrotropic tensor is a special linear combination of three of seven linearly indepen-
dent transversally isotropic tensors of rank 3.

We can also readily construct linearly independent transversally isotropic tensors of rank 4. These
tensors can be composed by applying the grouping and searching method to the tensors (3.11) and by
using Propositions 3.4–3.6:

I
˜
II
˜
I, rIrJrIrJ , rII

˜
IrI , ε

˜
εε
˜
ε, εKLrIrKrIrL, εIJrIrKrJrK , εIJεKLrIrKrJrL,

εIJrIε
˜
εrJ , I

˜
Iε
˜
ε, ε

˜
εI
˜
I, rIε

˜
εrI , εIJrII

˜
IrJ , I

˜
Iγ
˜
γ3, γ

˜
γ3I

˜
I, ε

˜
εγ
˜
γ3, γ

˜
γ3ε

˜
ε, rIγ

˜
γ3rJ ,

εIJrIγ
˜
γ3rJ , γ

˜
γ3γ

˜
γ3, r3I

˜
Ir3, r3rIr3rI , rIr3rIr3, r3ε

˜
εr3, εIJr3rIr3rJ , εIJrIr3rJr3.

(3.15)

Thus, we have constructed 25 transversally isotropic tensors of rank 4. But not all of them are linearly
independent. Therefore, it is necessary to choose linearly independent tensors. As is known, their number
is equal to 19, i.e., of the tensors (3.15), six tensors are superfluous. One can readily show that the tensors
containing r3 (there are 13 of them) are linearly independent. Of the remaining 12 two-dimensional
tensors, we should choose six linearly independent tensors, which, obviously, together with the other 13
tensors, form a linearly independent system. For the two-dimensional tensors, we introduce the following
notation:

C
˜
C
˜
C(1) = I

˜
II
˜
I, C

˜
C
˜
C(2) = rIrJrIrJ , C

˜
C
˜
C(3) = rII

˜
IrI , C

˜
C
˜
C(4) = I

˜
Iε
˜
ε,

C
˜
C
˜
C(5) = εKLrIrKrIrL, C

˜
C
˜
C(6) = εIJrII

˜
IrJ , a

˜
a
˜
a(1) = ε

˜
εε
˜
ε, a

˜
a
˜
a(2) = εIJεKLrIrKrJrL,

a
˜
a
˜
a(3) = εIJrIε

˜
εrJ , a

˜
a
˜
a(4) = ε

˜
εI
˜
I, a

˜
a
˜
a(5) = εIJrIrKrJrK , a

˜
a
˜
a(6) = rIε

˜
εrI .

(3.16)

One can readily prove the following relations between the tensors (3.16):

a
˜
a
˜
a(1) = C

˜
C
˜
C(2) − C

˜
C
˜
C(3), a

˜
a
˜
a(2) = C

˜
C
˜
C(1) − C

˜
C
˜
C(3), a

˜
a
˜
a(3) = C

˜
C
˜
C(1) − C

˜
C
˜
C(2),

a
˜
a
˜
a(4) = C

˜
C
˜
C(6) − C

˜
C
˜
C(5), a

˜
a
˜
a(5) = C

˜
C
˜
C(6) − C

˜
C
˜
C(4), a

˜
a
˜
a(6) = C

˜
C
˜
C(5) − C

˜
C
˜
C(4),

(3.17)
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Thus, the six relations (3.17) relate the 12 tensors (3.16). Hence we can conclude that any six linearly
independent tensors in the set of 12 tensors (3.16) can be taken as the desired linearly independent
tensors. In particular, for example, for the linearly independent tensors we can take the first six tensors
in (3.16) or the last six.

Note that these tensors are simultaneously two-dimensional gyrotropic tensors of rank 4. Since
for linearly independent two-dimensional gyrotropic (transversally isotropic) tensors we can take, for
example, the tensors

C
˜
C
˜
C(1)=I

˜
II
˜
I, C

˜
C
˜
C(2)=rIrJrIrJ , C

˜
C
˜
C(3)=rII

˜
IrI , C

˜
C
˜
C(4)=I

˜
Iε
˜
ε, C

˜
C
˜
C(5)=εKLrIrKrIrL, C

˜
C
˜
C(6)=εIJrII

˜
IrJ , (3.18)

it follows that a two-dimensional gyrotropic (transversally isotropic) tensor C
˜
C
˜
C of rank 4 whose compo-

nents do not have any symmetry is a linear combination of these tensors:

C
˜
C
˜
C = CIJKLrIrJrKrL =

6∑

k=1

CkC
˜
C
˜
C(k), (3.19)

where the Ck, k = 1, 6, are some nonzero constants. We note that the first three tensors in (3.18)
are two-dimensional isotropic tensors of rank 4, which, of course, are the minimal restrictions of the
corresponding spatial isotropic tensors of rank 4. Therefore, we preserve the same notation for them
as for the spatial tensors. If the components of the tensor C

˜
C
˜
C have the symmetry CIJKL = CKLIJ ,

then C4 = C5 = C6 = 0 (in what follows, we prove that these constants are zero), and in this case,
instead of (3.19), we have

C
˜
C
˜
C = CIJKLrIrJrKrL =

3∑

k=1

CkC
˜
C
˜
C(k). (3.20)

Note that (3.20) is a representation of a two-dimensional isotropic (gyrotropic) tensor of rank 4
whose components have the symmetry CIJKL = CKLIJ . Clearly, this tensor has three independent
components.

Now we return to the spatial case. For the tensors containing r3, we introduce the notation

C
˜
C
˜
C(7) = I

˜
Iγ
˜
γ(3), C

˜
C
˜
C(8) = ε

˜
εγ
˜
γ(3), C

˜
C
˜
C(9) = γ

˜
γ(3)I

˜
I, C

˜
C
˜
C(10) = γ

˜
γ(3)ε

˜
ε, C

˜
C
˜
C(11) = rIr3rIr3,

C
˜
C
˜
C(12) = εIJrIr3rJr3, C

˜
C
˜
C(13) = rIγ

˜
γ(3)rI , C

˜
C
˜
C(14) = εIJrIγ

˜
γ(3)rJ , C

˜
C
˜
C(15) = r3I

˜
Ir3,

C
˜
C
˜
C(16) = r3εr3, C

˜
C
˜
C(17) = r3rIr3rI , C

˜
C
˜
C(18) = εIJr3rIr3rJ , C

˜
C
˜
C(19) = γ

˜
γ(3)γ

˜
γ(3).

(3.21)

Hence the tensors (3.18) and (3.21) exhaust all linearly independent spatial transversally isotropic
tensors of rank 4. Therefore, a spatial transversally isotropic tensor of rank 4 whose components do not
have any symmetry has 19 independent components and is a linear combination of (3.18) and (3.21):

C
˜
C
˜
C = Cijklrirjrkrl =

19∑

k=1

CkC
˜
C
˜
C(k), (3.22)

where the Ck, k = 1, 19, are some nonzero constants. We rewrite (3.22) in components,

Cijkl = C1IijIkl + C2IikIjl + C3IilIjk + C4Iijεkl + C5Iikεjl + C6εilIjk + C7Iijγ
(3)
kl

+ C8εijγ
(3)
kl + C9γ

(3)
ij Ikl + C10γ

(3)
ij εkl + C11Iikγ

(3)
jl + C12εikγ

(3)
jl + C13Iilγ

(3)
jk

+ C14εilγ
(3)
jk + C15γ

(3)
il Ijk + C16γ

(3)
il εjk + C17γ

(3)
ik Ijl + C18γ

(3)
ik εjl + C19γ

(3)
ij γ

(3)
kl , (3.23)

Iij = δMiδMj, εij = εMNδMiδNj = −εji.
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It readily follows from (3.23) that the following components are nonzero:

CIJKL = C1δIJδKL + C2δIKδJL + C3δILδJK + C4δIJεKL + C5δIKεJL + C6εILδJK ,

CIJ33 = C7δIJ + C8εIJ , C33KL = C9δKL + C10εKL, CI3K3 = C11δIK + C12εIK ,

CI33L = C13δIL + C14εIL, C3JK3 = C15δJK + C16εJK , C3J3L = C17δJL + C18εJL,

C3333 = C19.

(3.24)

Using (3.24), we can compute that a transversally isotropic tensor of rank 4 whose components do
not have any symmetry has 41 nonzero components, of which 19 are independent. From the first relation
in (3.24), we obtain

C1111 = C2222 = C1 + C2 + C3, C1112 = −C2221 = C4 + C5 + C6,

C1122 = C2211 = C1, C1121 = −C2212 = −C4

C1212 = C2121 = C2, C1211 = −C2122 = −C5,

C1221 = C2112 = C3, C2111 = −C1222 = −C6.

(3.25)

Therefore, we have the relations

C1111 = C2222 = C1122 + C1212 + C1221 = C2211 + C2121 + C2112,

C1112 = −C2221 = −(C1121 + C1211 + C2111) = C2212 + C2122 + C1222.
(3.26)

From the other relations in (3.24), we obtain

C1133 = C2233 = C7, C1233 = −C2133 = C8, C3311 = C3322 = C9, C3312 = −C3321 = C10,

C1313 = C2323 = C11, C1323 = −C2313 = C12, C1331 = C2332 = C13, C1332 = −C2331 = C14,

C3113 = C3223 = C15, C3123 = −C3213 = C16, C3131 = C3232 = C17, C3132 = −C3231 = C18,

C3333 = C19.

(3.27)

Using (3.25) and (3.27), we can represent the components Cijkl of the tensor C
˜
C
˜
C in matrix form.

We have

(C) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1112 C1121 0 0 0 0

C1122 C1111 C1133 −C1121 −C1112 0 0 0 0

C3311 C3311 C3333 C3312 −C3312 0 0 0 0

C1211 C1222 C1233 C1212 C1221 0 0 0 0

−C1222 −C1211 −C1233 C1221 C1212 0 0 0 0

0 0 0 0 0 C1313 C1331 C1323 C1332

0 0 0 0 0 C3113 C3131 C3123 C3132

0 0 0 0 0 −C1323 −C1332 C1313 C1331

0 0 0 0 0 −C3123 −C3132 C3113 C3131

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.28)

Now assume that the components Cijkl have the symmetry Cijkl = Cklij . Then, by interchanging the
index pairs IJ and KL in the first relation in (3.24) and by matching the right-hand sides of the resulting
relation and of the first relation in (3.24), we obtain

C4(δIJεKL − εIJδKL) + C6(εILδJK − δILεJK) = 0.
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Since this relation holds for any I, J , K, L, we obtain C4 = 0 and C6 = 0. Taking this fact into account
and using the second relations in the second and third rows in (3.25) and the second relation in (3.26),
we can prove that C5 = 0.

Then from the first relation in (3.24) we obtain

CIJKL = C1δIJδKL + C2δIKδJL + C3δILδJK ,

which is the representation of (3.20) in components. From the remaining relations, we obtain

C7 = C9, C8 = C10, C12 = 0, C13 = C15, C14 = −C16, C18 = 0. (3.29)

Introducing the notation

ak ≡ Ck, a4 ≡ C7 = C9, a5 ≡ C8 = C10, a6 ≡ C11,

a7 ≡ C13 = C15, a8 ≡ C14 = −C16, a9 ≡ C17, a10 ≡ C19

and taking into account (3.29), we can rewrite (3.23) as

Cijkl = a1IijIkl + a2IikIjl + a3IilIjk + a4(Iijγ
(3)
kl + γ

(3)
ij Ikl) + a5(εijγ

(3)
kl + γ

(3)
ij εkl)

+ a6Iikγ
(7)
jl + a7(Iilγ

(7)
jk + γ

(7)
il Ijk) + a8(εilγ

(3)
jk − γ

(3)
il εjk) + a9γ

(3)
ik Ijl + a10γ

(3)
ij γ

(3)
kl . (3.30)

From (3.30) or (3.24), we obtain

CIJKL = CKLIJ = a1δIJδKL + a2δIKδJL + a3δILδJK , CIJ33 = C33IJ = a4δIJ + a5δεIJ ,

CI3K3 = a6δIK , CI33L = C3LI3 = a7δIL + a8εIL, C3J3L = a0δJL, C3333 = a10.
(3.31)

One can readily see that the following relations remain in (3.26):

C1111 = C2222 = C1122 + C1212 + C1221 = C2211 + C2121 + C2112. (3.32)

Thus, if the components of the tensor C are symmetric with respect to the first and last pairs of
indices, then the tensor has 10 independent components. In our case, the matrix (3.28) has the form

(C) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 0 0 0 0 0 0

C1122 C1111 C1133 0 0 0 0 0 0

C1133 C1133 C3333 C3312 −C3312 0 0 0 0

0 0 C3312 C1212 C1221 0 0 0 0

0 0 −C3312 C1221 C1212 0 0 0 0

0 0 0 0 0 C1313 C1331 0 C1332

0 0 0 0 0 C1331 C3131 −C1332 0

0 0 0 0 0 0 −C1332 C1313 C1331

0 0 0 0 0 C1332 0 C1331 C3131

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.33)

where, by virtue of (3.32),

C1111 = C1122 + C1212 + C1221. (3.34)

We see that 29 components in the matrix (3.33) are nonzero, and 10 of them are independent.
Next, if we assume that the components of the tensor C

˜
C
˜
C are symmetric with respect to not only the

first and last pairs of indices but also, for example, the last two indices, i.e., if Cijkl = Cklij = Cijlk, then
from (3.31) we obtain

a2 = a3, a5 = 0, a6 = a7 = a9, a8 = 0. (3.35)

Using (3.35), we conclude that in our case the tensor C
˜
C
˜
C has five independent components. In this

case, the symmetry with respect to the first two indices of the components follows from the already
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existing symmetries. By introducing the notation Λ1 = a1, Λ2 = a2, Λ3 = a4, Λ4 = a10, and Λ5 = a6,
we can rewrite (3.30) as

Cijkl = Cklij = Cijlk = Λ1IijIkl + Λ2(IikIjl + IilIjk) + Λ3(Iijγ
(3)
kl + γ

(3)
ij Ikl)

+ Λ4γ
(3)
ij γ

(3)
kl + Λ5(Iikγ

(3)
jl + Iilγ

(3)
jk + γ

(3)
il Ijk + γ

(3)
ik Ijl). (3.36)

From (3.36) and (3.31), we obtain

CIJKL = Λ1δIJδKL + Λ2(δIKδJL + δILδJK), CIJ33 = Λ3δIJ , C3333 = Λ4, CI3K3 = Λ5δIK .

In addition, from (3.32) we have C1212 = 1
2 (C1111 − C1122). Note that (3.36) coincides with the

representation of these components given in [5, 8–11] (see also [6, 12, 13, 15]).
Similarly, by using the grouping and searching method, one can construct linearly independent

transversally isotropic tensors of any rank, in particular, tensors of rank 5 and 6. But in what follows
we construct linearly independent tensors of rank 5 and of rank 6 by a somewhat different method, which
will be called the contraction and searching method.

It follows from the structures of the tensors (3.9), (3.11), (3.14), (3.18), and (3.22) that they can also
be constructed from the corresponding multiplicative bases (multibases) by using the index restriction
to compose those multibases which are then used to construct the desired tensors by contracting the
indices of these multibases with the indices of the two-dimensional Kronecker and Levi-Cività symbols.
Note that transversally isotropic tensors of even (odd) rank can be constructed from the multibases
obtained from the corresponding multibases by even (odd) orders of restriction.

What was said above can be stated as the following theorem.
Theorem 3.4. To construct transversally isotropic tensors of even (odd) rank, it suffices to

compose all possible multibases from the corresponding multibasis by using even (odd) orders
of restriction. The indices of the multibases obtained by the restriction must be contracted with
the indices of the two-dimensional Kronecker and Levi-Cività symbols, exhausting all possible
cases. Then the set of tensors of given rank constructed by the above method contains all linearly
independent transversally isotropic tensors.

In what follows, we use this theorem to construct linearly independent transversally isotropic tensors
of rank 5 and 6. First, we construct tensors of rank 5. To this end, we use the odd orders (first, third, fifth)
of restriction of the multibasis rirjrkrlrm to construct all possible bases. We have

rIrJrKrLr3, rIrJrKr3rL, rIrJr3rKrL, rIr3rJrKrL, r3rIrJrKrL,

rIrJr3r3r3, rIr3rJr3r3, rIr3r3rJr3, rIr3r3r3rJ , r3rIr3r3rJ , r3r3rIr3rJ ,

r2rIr3rJr3, r3r3r3rIrJ , r3rIrJr3r3, r3r3rIrJr3, r3r3r3r3r3.

(3.37)

All in all, we obtain 16 multibases and, contracting them with the two-dimensional Kronecker
symbol δMN and the Levi-Cività symbol εST and exhausting all possible cases, use them to construct
the set of transversally isotropic tensors of rank 5, among which there are linearly independent tensors.
One can see that the number of multibases in (3.37) whose order of restriction is equal to 1 is C1

5 = 5;
the number of multibases whose order of restriction is equal to 3 is C3

5 = 10; and (3.37) contains one
multibasis C5

5 = 1 (the maximal restriction of the spatial multibasis), which consists only of r3.
Now, to each multibasis containing only one r3 [the first five bases in (3.37)], we apply contractions

similar to those used to compose the tensors (3.18). Then we obtain six linearly independent tensors
for each of the multibases. In this case, r3 occupies a certain place in the representation of each of the
tensors thus obtained. For example, from the first multibasis, using the above method, we obtain the
tensors that can be obtained by attaching r3 on the right to the tensors (3.18). In a similar way, from the
fifth multibasis we obtain the tensor that can be obtained by attaching r3 on the left to the tensors (3.18).
From the second multibasis, we obtain the tensors that can be obtained by placing r3 at the forth place
(from left to right) between the basis vectors of each of the tensors (3.18). In a similar way, from the third
and fourth multibases we can construct the tensors that can be obtained by placing r3 at the third and
second places, respectively, between the basis vectors of each of the tensors (3.18). Thus, from the first
five multibases (3.37) we obtain 30 linearly independent transversally isotropic tensors of rank 5.

It is easily seen that one can construct two transversally isotropic tensors from each of the multibases
containing three r3, by contracting each of them first with the two-dimensional Kronecker symbol and
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then with the two-dimensional Levi-Cività symbol. Since the number of multibases containing three r3

is equal to 10, we obtain all in all 20 linearly independent tensors of rank 5. The last multibasis in (3.37)
(the maximal restriction) is a transversally isotropic tensor of rank 5.

Thus, from (3.37) by using the contraction and searching method, we have constructed a system of
linearly independent transversally isotropic tensors of rank 5, which contains 51 tensors, as desired. To
save space, we do not write them out here. We only note that the linear independence of the tensors thus
constructed can be proved easily, and we do not perform this here.

Clearly, a transversally isotropic tensor of rank 5 whose components do not have any symmetry is a
linear combination of 51 tensors and hence has 51 linearly independent components. The consideration
of various cases of symmetry is not hard, and we omit it.

Now let us construct linearly independent transversally isotropic tensors of rank 6. First, note that it
is impossible to construct the desired tensors from the multibases obtained by an odd-order restriction
from the three-dimensional multibasis rirjrkrlrmrn of order 6. Indeed, to compose some transversally
isotropic tensor from a multibasis obtained by the restriction of the corresponding spatial multibasis,
it must contain an even number of basis vectors with capital Latin indices, because only in this case
it can be contracted with the two-dimensional Kronecker and Levi-Cività symbols (each of which has
two indices). In this case, the multibasis whose number of capital Latin indices is zero, i.e., all of whose
indices are equal to 3, is unique in any case. It is called the maximal restriction and is a transversally
isotropic tensor (in this case, the even number is zero).

By Theorem 3.4, in the case under study, we must compose all possible multibases by using the
even orders (zeroth, second, fourth, and sixth) of restriction of the spatial multibasis rirjrkrlrmrn. First,
we compose the multibases that do not contain r3 (such a basis, called the minimal restriction of the
spatial multibasis, is unique: C0

6 = 1) and the multibases containing r3 two times (the number of such
multibases is C2

6 = 15). We have

rIrJrKrLrMrN , rIrJrKrLr3r3, rIrJrKr3rLr3, rIrJr3rKrLr3, rIr3rJrKrLr3,

r3rIrJrKrLr3, rIrJr3r3rKrL, rIr3rJr3rKrL, r3rIrJr3rKrL, rIrJr3rKr3rL,

r3r3rIrJrKrL, r3rIr3rJrKrL, r3rIrJrKr3rL, rIr3r3rJrKrL, rIr3rJrKr3rL,

rIrJrKr3r3rL.

(3.38)

Now one can readily compose the multibases containing r3 four times. Indeed, such multibases
(their number is equal to C4

6 = 15) can be obtained from the multibases containing r3 two times by
replacing the capital Latin indices in them with 3 and by replacing the indices equal to 3 with capital
Latin indices. Hence the multibasis that contains r3 six times and is called the maximal restriction of the
spatial multibasis is unique: C6

6 = 1. As a result, we obtain the following multibases:

r3r3r3r3rIrJ , r3r3r3rIr3rJ , r3r3rIr3r3rJ , r3rIr3r3r3rJ , rIr3r3r3r3rJ ,

r3r3rIrJr3r3, r3rIr3rJr3r3, rIr3r3rJr3r3, r3r3rIr3rJr3, rIrJr3r3r3r3,

rIr3rJr3r3r3, rIr3r3r3rJr3, r3rIrJr3r3r3, r3rIr3r3rJr3, r3r3r3rIrJr3,

r3r3r3r3r3r3.

(3.39)

Now from the first multibasis (3.38) we compose all linearly independent two-dimensional transver-
sally isotropic (gyrotropic) tensors of rank 6, whose number, as was shown above, is equal to 20. We
note that the set of these tensors contains all linearly independent two-dimensional isotropic tensors of
rank 6 obtained from the spatial isotropic tensors (1.5) by the operation of minimal restriction. Hence we
have the following statement.

Proposition 3.7. The two-dimensional isotropic tensors are the minimal restrictions of the
corresponding three-dimensional isotropic tensors. The minimal restrictions of linearly inde-
pendent three-dimensional isotropic tensors are linearly independent two-dimensional isotropic
tensors.

It follows from this proposition that, by using the operation of minimal restriction, we obtain all 15
two-dimensional linearly independent isotropic tensors of rank 6 from the tensors (1.5). By introducing
the notation C

˜
C(α) for tensors of rank 6 and by preserving the above notation for the two-dimensional
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ETBP and the tensors (3.18) of rank 4, we obtain the following linearly independent two-dimensional
isotropic tensors of rank 6:

C
˜
C(1) = I

˜
II
˜
II
˜
I = C

˜
C
˜
C(1)I˜

I = I
˜
IC
˜
C
˜
C(1), C

˜
C(2) = I

˜
IC
˜
C
˜
C(2), C

˜
C(3) = I

˜
IC
˜
C
˜
C(3), C

˜
C(4) = C

˜
C
˜
C(2)I˜

I,

C
˜
C(5) = C

˜
C
˜
C(3)I˜

I, C
˜
C(6) = rIC

˜
C
˜
C(1)rI , C

˜
C(7) = rIC

˜
C
˜
C(2)rI , C

˜
C(8) = rIC

˜
C
˜
C(3)rI ,

C
˜
C(9) = rII

˜
IrJrIrJ , C

˜
C(10) = rIrJI

˜
IrIrJ , C

˜
C(11) = rIrJrII

˜
IrJ , C

˜
C(12) = rIrJrIrKrJrK ,

C
˜
C(13) = rIrJrKrIrJrK , C

˜
C(14) = rIrJrKrIrKrJ , C

˜
C(15) = rIrJrKrJrIrK .

(3.40)

Since the tensors (3.40) are simultaneously two-dimensional transversally isotropic tensors of rank 6,
we have 15 linearly independent two-dimensional transversally isotropic (gyrotropic) tensors of rank 6 in
the form (3.40). Five more tensors are required to complete the system of linearly independent tensors.
Obviously, for the five missing tensors we can take any five linearly independent two-dimensional
transversally isotropic tensors of rank 6 other than (3.40) that, together with the tensors (3.40), form
a linearly independent system of 20 tensors. To construct the missing tensors, we consider the tensors

I
˜
I = rIrI , C

˜
C
˜
C(1) = I

˜
II
˜
I, C

˜
C
˜
C(2) = rIrJrIrJ , C

˜
C
˜
C(3) = rII

˜
IrI ,

ε
˜
ε = εIJrIrJ , C

˜
C
˜
C(4) = εIJrII

˜
IrJ , C

˜
C
˜
C(5) = I

˜
Iε
˜
ε, C

˜
C
˜
C(6) = εKLrIrKrIrL.

(3.41)

Note that, using (3.41), we can compose all linearly independent two-dimensional transversally
isotropic tensors of rank 6. To this end, it suffices to group the tensors I

˜
I and ε

˜
ε with each other and

with the other tensors and also, using Proposition 3.4, compose tensors of rank 6. This is one more
method for constructing the desired tensors. One can readily see that the tensors

C
˜
C(16) = rIC

˜
C
˜
C(4)rI , C

˜
C(17) = rIC

˜
C
˜
C(5)rI , C

˜
C(18) = rIC

˜
C
˜
C(6)rI , C

˜
C(19) = I

˜
IC
˜
C
˜
C(5), C

˜
C(20) = C

˜
C
˜
C(4)I˜

I (3.42)

formed by the above method by using the first and the last three tensors in (3.41) (which, of course,
can also be obtained by the contraction and searching method) are linearly independent. Moreover, they,
together with the tensors (3.40), form a linearly independent system. Thus, for linearly independent two-
dimensional transversally isotropic tensors of rank 6 we can take the tensors (3.41) and (3.42), whose
total number is equal to 20.

Now note that from each multibasis (3.38), starting from the second and using the contractions,
which would be used to compose the tensors (3.18) by the contraction and searching method (each
of them contains four basis vectors with capital Latin indices), we obtain 6 linearly independent
transversally isotropic tensors of rank 6 from each multibasis (3.38). Since the number of such bases
is equal to 15, we totally obtain 6 × 15 = 90 tensors. They are linearly independent. Now we write out
some of them. For example, to obtain the desired tensors from the second multibasis in (3.38), it suffices
to add γ

˜
γ(3) = r3r3 to the tensors (3.18) on the right. Continuing the numbering of tensors of rank 6,

we obtain

C
˜
C(21) = C

˜
C
˜
C(1)γ

(3), C
˜
C(22) = C

˜
C
˜
C(2)γ

(3), C
˜
C(23) = C

˜
C
˜
C(3)γ

(3),

C
˜
C(24) = C

˜
C
˜
C(4)γ

(3), C
˜
C(25) = C

˜
C
˜
C(5)γ

(3), C
˜
C(26) = C

˜
C
˜
C(6)γ

(3).
(3.43)

One can readily see that, from the eleventh multibasis in (3.38), we can obtain the tensors that follow
from (3.43) if we interchange C(α), α = 1, 6, and γ

˜
γ(3). Here we also write out the tensors that can be

obtained from the third multibasis in (3.38):

C
˜
C(27) = I

˜
IrKr3rKr3, C

˜
C(28) = rIrJrIr3rJr3, C

˜
C(29) = rII

˜
Ir3rIr3,

C
˜
C(30) = I

˜
IεKLrKr3rLr3, C

˜
C(31) = εKLrIrKrIr3rLr3, C

˜
C(26) = εIJrII

˜
Ir3rJr3.

(3.44)

Note that, by analogy with the last 6 tensors in (3.16), we can compose the following tensors from this
multibasis:

A
˜
A(1) = ε

˜
εεKLrKr3rLr3, A

˜
A(2) = εIJεKLrIrKrJr3rLr3, A

˜
A(3) = εIJrIε

˜
εr3rJr3,

A
˜
A(4) = ε

˜
εrKr3rKr3, A

˜
A(5) = εIJrIrKrJr3rKr3, A

˜
A(6) = rIε

˜
εr3rIr3,
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for which the relations similar to (3.17) have the form

A
˜
A(1) = C

˜
C(28) − C

˜
C(29), A

˜
A(2) = C

˜
C(27) − C

˜
C(29), A

˜
A(3) = C

˜
C(28) − C

˜
C(28),

A
˜
A(4) = C

˜
C(32) − C

˜
C(31), A

˜
A(5) = C

˜
C(32) − C

˜
C(30), A

˜
A(6) = C

˜
C(31) − C

˜
C(30);

i.e., they can be expressed in terms of the tensors (3.44). Quite in a similar way, we can compose the
desired tensors from the other multibases in (3.38). Therefore, to save space, we do not construct them
here.

Next, for each multibasis in (3.39) except for the last, by contracting them with the two-dimensional
Kronecker and Levi-Cività symbols, we can construct two linearly independent transversally isotropic
tensors of rank 6 for each of them. Obviously, from 15 multibases we obtain 2 × 15 = 30 tensors. The
last multibasis (the maximal restriction) is a transversally isotropic tensor of rank 6. Simple calculations
show that 20 + 90 + 30 + 1 = 141 transversally isotropic tensors of rank 6 are composed. The system of
these tensors is linearly independent.

Thus, the transversally isotropic tensor of rank 6 whose components do not have any symmetry is a
linear combination of a system of linearly independent transversally isotropic tensors of rank 6, which
consists of 141 tensors, i.e., such a tensor has 141 linearly independent components. Hence if the tensor
components have some symmetry, then the number of independent components of such a tensor is less
than 141. It follows from the preceding that, by using the above methods, it is not difficult, if necessary, to
construct linearly independent isotropic, orthotropic, and transversally isotropic tensors of any arbitrary
rank n > 6.
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